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ABSTRACT

We propose a frequency—time domain fusion audio codec for
the 2025 Low-Resource Audio Coding (LRAC) Challenge,
designed to meet strict constraints on complexity, latency, and
bitrate while ensuring high quality and robustness. The sys-
tem achieves 698 M FLOPs, 1.48 M parameters, and sub-30
ms latency, combining a frequency-domain encoder, Resid-
ual Vector Quantization (RVQ), and a time-domain decoder.
Multi-Period and Multi-Resolution GANS jointly refine tem-
poral and spectral fidelity. A multi-stage training process
combines spectral reconstruction with adversarial objectives
and noise-reduction strategies to ensure stable optimization
and high-quality output. Evaluations at 1 kbps and 6 kbps
in clean, noisy, and reverberant settings show consistent and
significant gains over the baseline.

Index Terms— speech codec, frequency—time domain fu-
sion, low resource

1. INTRODUCTION

Speech interfaces have become essential in embedded sys-
tems, mobile devices, and other platforms with limited com-
putational power or energy budgets. In such low-resource
environments, speech codecs must deliver real-time process-
ing while balancing complexity, bitrate, and latency, and still
preserve high audio quality under noise and reverberation.
While end-to-end neural audio coding has improved qual-
ity and compression efficiency, simultaneously achieving low
complexity, low latency, low bitrate, and robustness in real
acoustic conditions remains a major challenge.

The 2025 Low-Resource Audio Coding (LRAC) Chal-
lenge provides a stringent benchmark for this problem, with
strict limits on complexity, latency, and bitrate, and a require-
ment for real-world operation. It serves both as a test of en-
gineering capability and a driver for advances in integrated
low-resource speech coding.

To address these demands, we propose a frequency—time
domain fusion end-to-end audio codec for high-fidelity
speech reconstruction under extreme resource constraints.
The system combines frequency-domain encoding and time-
domain decoding, augmented by a multi-stage training pro-
cess, and noise-reduction techniques. These components
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jointly enhance transmission quality and fine-detail reproduc-
tion within tight computational and storage budgets, meeting
LRAC’s requirements for low latency, low bitrate, and high
intelligibility, and delivering superior performance across
diverse evaluation scenarios.

2. METHOD

2.1. Architecture

We propose a frequency—time domain fusion end-to-end au-
dio codec that achieves high-quality speech transmission
under strict resource constraints. The overall architecture, il-
lustrated in Fig. 1, consists of a frequency-domain encoder, a
residual vector quantizer (RVQ) [1, 2], and a time-domain de-
coder. The input audio is first transformed into an amplitude
spectrogram via short-time Fourier transform (STFT). The
frequency-domain encoder, built upon SpecTokenizer [3],
employs a complex convolution layer followed by four cas-
caded FdownBlocks and RNNBIlocks to extract and compress
spectral features. Each FdownBlock combines a 2D convolu-
tion with Snake2D activation to enhance harmonic structure
modeling, while each RNNBlock integrates FLNorm, Tanh,
GRU, 2D convolution, and Snake2D activation, with residual
connections to maintain stable gradient flow and preserve
feature fidelity.

The latent representation is subsequently quantized by the
RVQ module and passed to a BigCodec-based time-domain
decoder [4]. This decoder comprises a 1D convolution, a
unidirectional LSTM with residual connections, four sequen-
tial DecoderBlocks, SnakelD activation, an output 1D con-
volution, and Tanh activation. Each DecoderBlock contains
Snake1D activation [5], a 1D transposed convolution for up-
sampling, and several ResidualBlocks. Each ResidualBlock
consists of two 1D convolutions with different kernel sizes
and SnakelD activations, coupled with a residual connection
at the end, thereby improving high-frequency detail restora-
tion and spatial perceptual quality in waveform reconstruc-
tion.

Model training adopts a multi-objective loss function,
including multi-scale mel-spectrogram loss, VQ quantization
loss, and GAN-based adversarial loss. During adversarial
training, a Multi-Period Discriminator (MPD) and Multi-
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Fig. 1. The proposed model architecture.

Resolution Discriminator (MRD) [6] are employed jointly
to constrain both time-domain details and spectral textures,
significantly enhancing mid-to-high frequency energy repro-
duction and naturalness. As a result, the proposed system
delivers high-fidelity speech reconstruction that combines
audio quality and intelligibility under low-latency and low-
bitrate conditions.

2.2. Training Stages

We first trained the codec without noise-reduction to obtain
a performance-stable baseline model, and then introduced a
noise-reduction stage after convergence. Although the com-
petition rules explicitly state that noise-reduction features nei-
ther yield additional credit nor incur penalties in evaluation,
our experiments show that incorporating this stage signifi-
cantly improves speech quality in real acoustic environments.
Consequently, we consider noise-reduction training an essen-
tial component of system optimization.

The codec training process consists of two parts: a Mel
stage and a GAN stage. In the Mel stage, only the multi-scale
mel-spectrogram loss is used for optimization. The model
converges rapidly in this stage and achieves excellent recon-
struction in the low-frequency range (0-1.5 kHz), with cor-
respondingly high objective scores. However, because the
mel loss provides insufficient constraint in the mid-to-high
frequency range, the generated audio above 1.5 kHz often ex-
hibits blurred spectral detail, energy attenuation, and slight
mechanical artifacts, affecting subjective naturalness. To ad-
dress this issue, we switch to the GAN stage after Mel-stage
convergence, leveraging both the Multi-Period Discriminator
(MPD) and Multi-Resolution Discriminator (MRD) for ad-
versarial training. This significantly enhances mid-to-high
frequency detail restoration, produces spectral energy distri-
butions closer to natural speech, and effectively reduces me-
chanical noise. While some objective metrics (e.g., PESQ
and Scoreq) degrade slightly in this stage, subjective ratings
improve markedly, with richer spatial perception and more
natural fine detail.

During training, we observed an interesting phenomenon:
after several cycles in the GAN stage, returning to the Mel
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stage for further optimization causes objective scores not only
to recover but to exceed the best results of the initial Mel
stage. This may be because the GAN stage encourages the
generator to explore a broader solution space, providing the
mel loss with a better optimization starting point and helping
the model escape local minima.

In the noise-reduction training stage, the input data com-
prise a random mix of clean, noisy, and reverberant speech,
with the target output being the corresponding clean speech.
The loss functions and hyperparameters are kept identical
to those in codec training, and adversarial learning is again
applied to further improve the realism and richness of gener-
ated audio. The discriminator configuration follows a staged
policy: MPD alone in the early phase to strengthen time-
domain periodicity discrimination; MPD plus MRD in the
mid phase to impose multi-resolution spectral constraints;
and MRD alone in the late phase to focus optimization on
spectral detail restoration. Subjective listening tests indi-
cate that this configuration yields the best improvements in
mid-to-high frequency clarity, spectral extension, and overall
intelligibility, producing speech more closely resembling real
recordings.

3. EXPERIMENTS

3.1. Datasets

All training data in this study are sourced from the official
LRAC2025 dataset and underwent rigorous filtering and pre-
processing prior to use. For noise data, labels were predicted
using a pre-trained audio understanding model, and any non-
pure noise samples containing speech were removed to ensure
clean noise content. For reverberation data, room impulse re-
sponses (RIRs) were truncated before convolution, retaining
only the 1 ms segment following the peak. This reduces long-
tail decay that can impair speech clarity while preserving spa-
tial characteristics.

Based on this, we applied a data augmentation strategy by
mixing clean, noisy, and reverberant speech in a 1:1:1 ratio. In
noise mixing, the signal-to-noise ratio (SNR) was uniformly
sampled within the range of 10-30 dB to increase acoustic
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Table 1. Evaluation results for different bitrates and acoustic conditions.

Clean Noisy Reverb
Bitrate Method sheet scoreq audiobox utmos  pes sheet scoreq audiobox utmos  pes sheet scoreq audiobox utmos  pes
ssqa ref AE_CE S pesd ssqa ref AE_CE pesq ssqa ref AE_CE pesq
Ikb Baseline | 1.84 1.15 3.90 1.44 1.15] 1.72 1.29 3.40 1.33 1.11] 1.85 1.36 2.94 1.26 1.07
Ps
Proposed | 3.79 0.35 5.31 342 2.09 | 3.65 0.38 5.18 332 1921 2.80 0.59 4.53 2.58 1.46
6Kkb Baseline | 3.84 0.35 5.28 323 2.67|3.12 0.82 4.37 270  1.81|2.22 1.13 343 .32 1.18
ps
Proposed | 4.17 0.18 5.62 377 298| 3.99 0.30 545 364 250 3.14 0.53 4.5 274 1.62
Table 2. Latency breakdown of the proposed system.
Source Samples Notes
STFT hopsize 192 @ 16kHz Frame shift
Decoder Residual Units 272 @ 16kHz 64x3+16x4+4x4+1x5
Final decoder convolution 3 @ 16kHz Kernel size =7
Resampling delay 8 @ 24kHz Maximum group delay of the IIR filter
Total (24kHz) 716 @ 24kHz (29.83 ms) 472 x g +8
diversity. ms overall.

Model evaluation was conducted on an open test set from
the same source, with inference performed directly on the
original official data without additional processing, and per-
formance tested at both 1 kbps and 6 kbps bitrates.

3.2. Implementation Details

The proposed model has an overall computational complex-
ity of 698 M FLOPs and 1.48 M parameters, with the encoder
and RVQ module accounting for 399 M FLOPs and 1.17 M
parameters, and the decoder for 299 M FLOPs and 0.32 M pa-
rameters. The system operates at a sampling rate of 24 kHz,
with a frame length of 720 samples and a frame shift of 288
samples (approximately 83 Hz frame rate). In the STFT com-
putation, only frequency bins 0-240 (0-8kHz) are used, ef-
fectively yielding a 24kHz to 16 kHz downsampling without
introducing additional latency.

The encoder employs convolution kernels and strides of
1, introducing no additional latency. The decoder primarily
uses causal convolutions and causal transposed convolutions,
but non-causal convolutions are applied in specific positions
to enhance reconstruction quality: the first convolution layer
in the decoder (kernel = 1, stride = 1), the first convolution
layer within repeated ResidualBlocks (kernel sizes = [7, 9, 9,
11], stride = 1), and the final convolution layer in the decoder
(kernel = 7, stride = 1). These designs significantly improve
mid-to-high frequency detail within the latency budget. The
end-to-end latency is determined by both the STFT window
length and the non-causal convolutions, and is kept within 30
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To convert the 16 kHz audio output of the decoder to
24 kHz without noticeably increasing latency, we use a
fractional-rate resampling strategy. First, the signal is up-
sampled by a factor of three using zero-insertion. Next, the
spectral images introduced by zero-insertion are removed
with an 11th-order IIR Butterworth low-pass filter with an 8
kHz cutoff frequency. Finally, the signal is downsampled by
a factor of two to reach the target sampling rate. Compared
to an FIR-based approach, this IIR design exhibits a maxi-
mum passband group delay of only 8 samples near 8 kHz,
making it well-suited for real-time applications. The latency
breakdown is shown in Table 2.

The RVQ module consists of six codebooks, each con-
taining 4096 entries (indexed with 12-bit codes) and a vector
dimension of 8. During inference, either 1 codebook (for 1
kbps) or all 6 codebooks (for 6 kbps) can be selected, enabling
operation at two different bitrates. The encoder channel con-
figuration is [32, 32, 32, 128, 335], with time-axis kernel sizes
and strides of [1, 1, 1, 1] and frequency-axis kernel sizes and
strides of [5, 4, 4, 3]. The decoder channels are [117, 58, 29,
14, 7], with upsampling rates of [3, 4, 4, 4]. For the discrim-
inators, the MPD uses periods [2, 3, 5, 7, 11], and the MRD
operates with window sizes [128, 256, 512, 1024, 2048].

For optimization, both the generator and discriminators
use an initial learning rate of 8 x 10~* during the Mel stage
and 1 x 10™* during the GAN stage, gradually reduced to
1 x 10~°. Adam is used throughout all training stages.

Checkpoint Selection Strategy: For system submission, we
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performed subjective listening evaluations on multiple mod-
els from different training stages using the open test set, se-
lecting the checkpoint that yielded the best combination of
audio quality and fine-detail reproduction as the final compe-
tition version.

3.3. Results

Our evaluation uses Versa [7], the official toolkit recom-
mended by the 2025 LRAC Challenge, which provides
standardized implementations of multiple metrics, includ-
ing sheet_ssqa, scoreq_ref, audiobox AE_.CE, UTMOS, and
PESQ. Experiments are conducted under three acoustic con-
ditions: clean, noisy, and reverberant. Using the RVQ mod-
ule’s ability to achieve variable bitrate by selectively dropping
codebooks during inference, we further evaluate the model at
1 kbps and 6 kbps.

The evaluation results are summarized in Table 1. Under
all three acoustic conditions and both bitrates, the proposed
method outperforms the baseline system across all metrics.

4. CONCLUSION

We propose a frequency-time domain fusion end-to-end
codec for low-resource audio coding, combining iterative
optimization with noise-reduction to enhance quality and ro-
bustness across diverse acoustic conditions and bitrates. Ex-
ploiting the complementarity of frequency-domain encoding
and time-domain decoding, the system achieves high-fidelity
speech reconstruction within strict complexity and latency
limits. Experiments demonstrate consistent gains over the
baseline in clean, noisy, and reverberant settings, confirming
the effectiveness of the approach and its potential for more
complex scenarios.
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LOW RESOURCE AUDIO CODEC CHALLENGE
Sublime SYSTEM DESCRIPTION

Piotr Dura
piotrdura7 @gmail.com

Abstract—This work aims to advance neural audio coding
by exploring novel approaches for Speech Vocoding and Vector
Quantization (VQ). Both Track 1 and Track 2 systems are
proposed, and both are convolutional encoder-decoder models
with discrete representation emitted by the encoder. The decoder
is a convld-conv2d hybrid Fourier-domain vocoder we call
Sublime. Both Tracks share the same Vocoder weights. A novel
quantization scheme, which we call Simulated Annealing Vector
Quantization (SAVQ), is proposed along with a method to prevent
codebook collapse.

Index Terms—LRAC 2025, audio coding, VQ, generative ad-
versarial networks

I. INTRODUCTION

In this work, we present the design of a participant system
for the 2025 LRAC challenge Tracks 1 and 2. Track 1 system
is comprised of the encoder (3.8M params, 399.7 MFLOPS)
and decoder (2.5M params, 294.1 MFLOPS). Track 2 system
also contains a frontend (20.6M params, 2284.6 MFLOPS).
Quantizer can operate in two modes — 1kbps and 6kbps, both
modes can be used interchangeably by the decoder. The model
is fully causal, but the buffering latency of analysis-synthesis
accounts for the full 30ms end-to-end latency budget. Track 2
reuses the decoder weights, and instead of the encoder-SAVQ
combination, a separate convolutional encoder is trained with
the objective of predicting the codes via a Cross Entropy Loss.
Track 2 encoder has an additional 20ms of algorithmic latency
which result in a 50ms end-to-end latency. The latency figures
are not estimated, but are the worst-case, measured latencies
imposed by the algorithm. Presented MFLOPS numbers are
obtained using a pytorch calflops package.

Total amount of training time spent on both Tracks is less
than 120 gpu-hours on an NVIDIA RTX 4090, out of which
96 gpu-hours were assigned for Track 1 and 24 gpu-hours for
Track 2.

II. ENCODER

The first processing stage converts the input 24kHz mono
waveform into two log-mel spectrograms (10ms hop, 20ms
window, 64 filters and 10ms hop, 30ms window, 96 filters)
and concatenates them in channel dimension. The result is
processed by a convld block (kernel size 3, 160 input chan-
nels, 256 hidden channels, 120 feed-forward channels), then
the frames are stacked with stride N = 2 to form a 20ms-per-
frame sequence. Causal stacking is used to not increase the
latency, so that the initial stacked frames are partial during
inference. The stacked sequence is further processed by 8
convld blocks (each has kernel size 3, 384 hidden channels,
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Fig. 1. Convld and Conv2d blocks.

384 feed-forward channels) and projected into query vectors g.
Convld blocks are inspired by ConvNeXt [1] but use vanilla
(non-depth-separable) convld and include a transformer-style
feed-forward block with expansion and RMSNorm normaliza-
tion.

ITII. QUANTIZATION

Standard quantization schemes require finding a nearest-
neighbor embedding out of an embedding table for each
frame of the input using an L2 or cosine distance. Since
the embedding lookup is nondifferentiable, a straight-through
estimation (STE) is typically used. An optional commitment
loss can be used to penalize the distance between the input
frames and the quantized output frames. Typical implemen-
tations leverage techniques like K-means initialization, dead
code revival or smoothing of the update of an embedding
table via an EMA. To improve the efficiency of compression,
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SoundStream introduces a residual VQ [4]. RVQ quantizes the
input and then iteratively quantizes the resulting quantization
error with a number of separate embedding tables. More recent
approaches such as FSQ [5] avoid using an embedding table
altogether.

The proposed SAVQ utilizes cosine Cross-Attention with
a learnable bank of embeddings and is parametrized by the
temperature T:

S cosine
SAVQ(q, k, v; T) = softmax (*F Co“neT-Slm(q’ i >> 1%

where k,q € RP

As the training progresses the temperature is annealed with
a fixed annealing schedule. In the early stages when the
temperature is high, attention over the embeddings has high
entropy. Over time the sharpness of the attention increases and
the behavior of the system shifts towards compression. As
temperature approaches zero, attention over the embeddings
approaches a one-hot vector. Notice, that a standard dot-
production attention would not be effective for this purpose, as
the network would be able to arbitrarily parametrize norms of
query-key pairs. Second, because the cosine metric is used the
normalization term of /D is moved to the numerator. To in-
crease the efficiency of compression, G groups of embeddings
have been used, which is equivalent to a multi-head attention.

To enable efficient learning of the encoder even with low
temperatures a temperature floor parameter T is introduced.
Activations that are emitted by the quantizer are calculated
using the original 7', only the gradient that flows back to the
encoder is modified as if the attention weights were calculated
using max (T, Tr).

This formulation, while empirically effective, suffered from
codebook collapse, where roughly 10-20% of all codes ended
up never being the top-1 activation. As the training progressed
and temperature was annealed these codes were never reused
by the model. A simple technique would be to employ entropy
maximization loss:

Lu(p)=—H(p) =Y _p(t,k) log p(t, k)
t,k

where p is a categorical distribution over codes in a given
codebook, t is batch-time-step, k is embedding index.

Since we don’t want to penalize low codebook entropy as
long as all codes have non-zero usage, we applied an ad-hoc
loss called reciprocally-weighted smoothed surprisal (RWSS):

RWSS(p) = — Z ! Z log p(t, k)

. pr (k) +e t€Qu k)

where p (k) denotes empirical probability that the code k is a
top-1 activation calculated over batch examples and time steps,
€ is a smoothing constant, (), is a set of batch-time-steps that
contains upper g-quantile of all p(:, k)

Intuitively, entropy maximization would penalize high log-
probabilities of “activated” tokens and would move the at-
tention weights towards a uniform distribution. RWSS loss
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penalizes low log-probabilities of tokens that are rarely acti-
vated (low px (k)) and routes that penalty only to the frames
that already have high contribution of those codes. Version of
this loss that penalized all frames instead of the top g-quantile
resulted in a codebook in which code utilization oscillated
highly over time.

Two quantizers are trained in parallel. Quantizer A uses
G = 4 groups, each containing K = 32 embeddings at 50
frames-per-second. Quantizer B uses G = 20 groups. Ultra-
low bitrate mode is achieved by calculating both quantizer
outputs and adding the resulting embeddings. During training
the quantizer B embedding is added with a probability of 50%.

IV. VOCODER

Following recent SOTA systems (Vocos [6], Wavehax [7])
we design a Sublime (SUB-band LInear Magnitude-phase
Estimation) vocoder which converts the latent space of the
quantizer z into a log-magnitude spectrogram Mlog and raw
phases P that are inverted using an ISTFT (20ms hop, 40ms
window): R R

§ = ISTFT(eMiestiP)

Input of the vocoder z is processed by 4 convld blocks
(kernel size 3, 256 hidden channels, 384 feed-forward chan-
nels), then another 4 convld blocks (kernel size 3, 256 hidden
channels, 256 feed-forward channels), then three separate
sub-band conv2d decoders are used to produce three 4d
tensors of shape [batch, features, channels, time]. All three
tensors are concatenated along the channel dimension and
projected via conv2d to a [batch, 2, channels,time] tensor
containing the log-magnitudes and phases. These sub-band
decoders emit the following frequency bands: [0 — 2kHz],
[2 — 6kHz] and [6 — 12kHz]. Each sub-band decoder is
composed of a series of Pixel-Shuffle (PS) upsampling layers,
each followed by Universal Inverted Bottleneck (UIB) block
introduced in MobileNet V4 [2] and include multiplicative
activation GEGLU [3]. PS layers upsample only in the channel
dimension, however versions that upsample in time dimension
coupled with 10ms or 5ms I ST F'T" were also tested. The final
configuration specifies 2 upsampling layers for the 1st and 2nd
sub-band, each with upsample rate [2,1] and followed by a
single UIB block with 8 feature maps, kernel size [5, 3] in both
depth-wise convolutions, and expansion factor 1.5. The last
sub-band decoder uses a single upsample layer with upsample
rate [4,1] and a single UIB block with kernel size [3, 3].

Training of the vocoder utilized an ensemble of three dis-
criminators: Multi-Period Discriminator (MPD), Multi-scale
STFT Discriminator (MSSTFTD) and a Multi-scale Magni-
tude Discriminator (MSMAGD) which has the same archi-
tecture as MSSTFTD, but uses log-magnitude inputs, instead
of complex-valued inputs. MSSTFT and MSMAGD use 128
feature maps.

V. TRAINING

Track 1 system has been trained in two phases. In both
phases an encoder with a decoder has been both optimized
with a waveform reconstruction task.
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In the first phase, temperature has been annealed for 20k
steps from an initial 7y = 0.02 to 73 = 0.01 with a cosine
decay, then for additional 130k steps using an exponential
decay, halving temperature every 8k steps. Temperature floor
was set to Tr = 0.01. Losses used in this phase were multi-
scale L1 mel loss with weight w,,¢; = 10.0, multi-scale L1
mfcc loss with weight w,, r.c = 1.0, as well as RWSS loss
with weight w;,,ss = 1.0, smoothing factor ¢ = 0.001 and
q = 0.05.

In the second phase, encoder was frozen, temperature set
to T' = 0 and discriminators were enabled. Training losses
consisted of multi-scale L1 mel loss w,,,; = 10.0, feature-
matching loss wy,, = 1.0 and discriminator loss wq = 1.0. In
this phase the network was trained for a total of 160k steps
which is short of the full convergence.

Track 2 system has been trained by freezing the Track
1 system, and training a separate frontend used instead of
the encoder-SAVQ, with a cross-entropy objective. Prediction
of the codes is assumed to be conditionally independent
between the codebooks, and during inference greedy decoding
is performed. Track 2 system has been trained for a total of
120k steps.

All three training runs use AdamW optimizer and follow a
cosine learning-rate decay between lrg = 2e — 4 and Irogor, =
le — 4, with effective batch size of 32.

VI. DATASET

In Track 1, first phase trained with the full provided training
set, with a segment size of 3 seconds. Phase 2 trained with a
clean split of the provided training set, with a segment size of
1 seconds. Track 2 system was trained with a clean split of
the training set, using full utterances and batch zero-padding.
Clean split was obtained by calculating UTMOS score and
taking the top 60% of all utterances.

All training runs set the gain of audio to a dB RM S level
drawn randomly from a [—18dB, —6dB] range. Inputs of the
model are degraded by a sequence of data augmentation steps.
First, random RIR from the provided set of RIRs is convolved
with the input (with probability 25% for Track 1 and 40%
for Track 2), then random noise from the provided set of
training noises is added with a randomly sampled dB SNR
([6dB — 30dB] for Track 1 and [-6dB — 30dB]). Lastly a
down-sampling is simulated with probability 20% of obtaining
8k H z sampling rate, and 50% of obtaining 16k H z sampling
rate.

VII. EVALUATION

Final model checkpoint has been selected by comparing
UTMOS scores calculated on an open testset set, combined
with manual listening. Tables I, II, III, IV, V, VI contain
UTMOS Results of a submitted checkpoint followed by results
of a converged checkpoint (trained for a total of 1.3M steps
for Track 1 and 2M steps for Track 2) in parentheses. All
UTMOS values are calculated on an open testset.
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Model Clean
baseline (1 kbps) 1.44
proposed (1 kbps) 2.49 £ 0.5 (2.69 + 0.51)
baseline (6 kbps) 3.23
proposed (6 kbps)  3.14 + 0.57 (3.33 + 0.57)

TABLE I
TrRACK 1 UTMOS CLEAN

Model

baseline (1 kbps) 1.33
proposed (1 kbps)  2.47 + 0.47 (2.65 + 0.48)
baseline (6 kbps) 2.7
proposed (6 kbps)  3.05 + 0.54 (3.21 + 0.54)

TABLE II
TRACK 1 UTMOS Noisy

Noisy

Model Reverb

baseline (1 kbps) 1.26

proposed (1 kbps)  2.16 + 0.43 (2.28 + 0.42)
baseline (6 kbps) 1.32

proposed (6 kbps) 2.58 £ 0.52 (2.7 = 0.49)

TABLE III
TrRACK 1 UTMOS REVERB

Model Clean
baseline (1 kbps) 1.37
proposed (1 kbps)  2.48 + 0.48 (2.69 + 0.48)
baseline (6 kbps) 2.97
proposed (6 kbps)  3.14 + 0.56 (3.36 + 0.55)

TABLE IV
TRACK 2 UTMOS CLEAN

Model Noisy
baseline (1 kbps) 1.35
proposed (1 kbps)  2.35 £ 0.51 (2.71 + 0.53)
baseline (6 kbps) 2.56
proposed (6 kbps) 2.85 £ 0.6 (3.24 + 0.56)

TABLE V
TRACK 2 UTMOS Noisy

Model Reverb

baseline (1 kbps) 1.32

proposed (1 kbps)  2.27 £ 0.47 (2.63 £ 0.49)
baseline (6 kbps) 1.79

proposed (6 kbps)  2.66 + 0.55 (3.23 + 0.55)

TABLE VI
TRACK 2 UTMOS REVERB
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LRAC SYSTEM DESCRIPTION FOR TRACK1 AND TRACK2

Zigian Wu JiaWei Jiang Kunpeng Lin He Wang Qingbo Huang
ByteDance
ABSTRACT to ensure compliance with the challenge’s requirements, the

This paper describes our team’s submission to the 2025 Low-
Resource Audio Codec (LRAC) Challenge, covering the
models for both trackl and track2—with the same model ar-
chitecture used for both tracks. Key details presented include
the model structure, loss function design, hyperparameter set-
tings, computational complexity, and latency. These details
reflect our approach to meeting the low-resource require-
ments of the challenge, providing transparency for our codec
design.

Index Terms— Neural audio codec, residual vector quan-
tilization, audio enhancement

1. INTRODUCTION

Low-resource audio codecs are critical for applications such
as edge devices or low-bandwidth networks, where limited
computing power and storage require efficient compression
without sacrificing audio quality. The 2025 Low-Resource
Audio Codec (LRAC) Challenge was launched to advance
such technologies, setting clear goals to balance perceptual
quality, compression ratio, and resource efficiency across two
tracks.

Our team participated in this challenge, aiming to design
a codec that meets the low-resource criteria while performing
well on both tracks. A key choice in our design is that we used
the same model architecture for trackl and track2—this sim-
plifies development while ensuring consistent performance
principles.

In the following sections, we will detail our model’s struc-
ture, loss function, hyperparameter settings, computational
complexity, and latency. These details explain how our codec
addresses the LRAC Challenge’s requirements and provide a
basis for understanding its performance.

2. DATA PROCESSING

For trackl and track2 of the challenge, we adopted an iden-
tical data selection strategy. Specifically, we utilized the of-
ficial dataset selection script provided by the challenge orga-
nizers to filter and process the data. Through this standardized
script, a total of 340k audio sequences were selected, corre-
sponding to more than 700 hours of speech data. Additionally,
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noise and reverberation data used for data augmentation were
strictly sourced from the datasets specified in the challenge
guidelines.

Before training, the data undergo preprocessing as fol-
lows:

1. Pitch modification: 10% speech signals are applied
randomly with pitch shift in the range of -2 to 12 semi-
tones.

2. Duration normalization: All speech segments are
standardized to 8 seconds. Segments longer than 8 sec-
onds are truncated, while those shorter than 8 seconds
are repeated to reach the target length.

3. Speech type configuration: The preprocessed data
consists of four types with specific proportions: clean
speech, noisy speech, reverberant speech, and multi-
speaker speech.

* For noisy speech, the signal-to-noise ratio (SNR)
is randomly set between -5 and 10.0 in trackl,
-20 and 20.0 in track2. After adding noise, there
is a 40% probability of further applying reverber-
ation.

* Reverberant speech is generated directly using the
challenge-specified reverberation dataset. After
adding reverberation, there is a 40% probability
of further adding noise.

e For simultaneous talkers, the amplitude of one
speaker’s voice is randomly scaled to 0.3 to 1.0
times its original value, then directly summed
with the voice of the other speaker.

The proportions of signal types are as follows in Table 1:

Clean Noisy Reverb Simultaneous
Talkers
Trackl 8 5 5 2
Track2 4 4 1 0

Table 1. Proportions of signal type weights in different tracks

For track 1, the goal is transparent audio transmission, so
its training target is input audio to input audio.For track 2,
the goal is noise reduction and dereverberation, so its training
target is input audio to the denoised and dereverberated audio.

09



3. MODEL STRUCTURE

The model is composed of three core components: an en-
coder, a quantizer and a decoder, which processes an input
audio sequence in the time domain with shape [1, T'| and pro-
duces an output sequence with the same shape.

The encoder begins with a ConvlD layer with a kernel
size k = 7. Next, it incorporates 4 repeated modules, with
stride = 3, 4, 5, 8. In each module, 3 residual units with dila-
tion = 1, 3, 9 and SnakeBeta activation are applied. Finally,
a GRU layer is used to leverage inter-frame correlations be-
tween features. The SnakeBeta is defined as follows in Equa-
tion 1:

SnakeBeta(z) = x + %sinz(aa:) €))

The quantizer adopts Residual Vector Quantization: 12
codebooks are used at a bitrate of 6 kbps, while 2 codebooks
are employed at 1 kbps. Additionally, each layer of the code-
books has a size of 1024, and each codebook has a dimension
of 8.

The Decoder starts with a ConvlD layer to project the
quantized features into a suitable dimension for subsequent
processing. 8 Conv2FormerBlocks[1] are stacked to trans-
form and reconstruct the features, leveraging the strengths of
Conv2Former in modeling both local and global feature de-
pendencies. A final Conv1D layer further refines the feature
map, preparing it for time-frequency conversion. Ultimately,
an ISTFT (Inverse Short-Time Fourier Transform) layer con-
verts the processed features back into the time domain. Model
struct is showed in Figure 1.

The model takes 20ms audio data as input. The latency
will be introduced in section 7.

Both tracks used the same model struture with different
model size, the main different params of both model are listed
in Table 2.

Parameter Track1 Track 2
encoder_dim 12 32
encoder_group 4 8
encoder_output_latent_dim 256 512
conv2formerblock_input_dim 372 512
conv2formerblock_hidden_dim 380 620

Table 2. Comparison of model parameters between Track 1
and Track 2

4. DISCROMINATORS AND LOSS FUNCTIONS

4.1. Discriminators

We used a variety of discriminators, including the Multi-
period Discriminator[2], Multi-res STFT Discriminator[2],
Multi-res Subband STFT Discriminator, and Multi-seq length
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Mel-spectrogram Discriminator[3]. All these discriminators
are updated at every training step. Parameters of these dis-
criminators are showed in Table 3.

Discriminator Type Params Values
Multi-period .
Discrirrr)linator periods 2.3
1]\)/11:1;;::;2;1? fft_sizes 64, 128,
256, 512,
1024,
2048
window_lengths 64, 128,
256, 512,
1024,
2048
hop_factor 0.25
Multi-res Subband -
STFT Discriminator fft_sizes 2048,
1536,
1024,
768,512
window_lengths 2048,
1536,
1024,
768,512
hop_factor 0.25
Multi-seq Length
Mel-spec Discriminator n-mel 80
fft_size 1024
fft_window_length 1024
hop-length 512
seq-length 64, 128,
256

Table 3. Parameters of Different Discriminators

4.2. Loss Functions

We employed a range of loss functions in our framework, in-
cluding multiscale mel loss, multiscale STFT loss, discrim-
inator feature loss, generator loss, RVQ commitment loss,
RVQ codebook loss, PESQ[4] loss, and modified multiscale
STFT loss[5]. These losses collectively contribute to optimiz-
ing the model’s performance by addressing different aspects
of audio generation quality, feature alignment, and perceptual
consistency. The total loss functions are defined as follows in
Equation 2:

Loss = A\1LosSer + A2LoSSgs
+ AzLossgisc + A4L0SSgen
+ )\SLOSS\chommil + >\6Losqucodebook
+ )\7Losspesq + )\8L055m0diﬁed,stft (2

5. TRAINING PROCESS

During the model training, we adopted a two-stage training
process. In the second stage, we significantly reduced the
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Fig. 1. Schematic diagram of the model architecture

weight of the mel loss, which facilitates the generation of
clear harmonics in the audio. We only applied the two-
stage training to the model for Track 1, while the model
for Track 2 only underwent one-stage training.

Training parameters are defined in Table 4.

Param Stage 1 Stage 2
Batch size 16 16
Training steps 800000 200000
LR 0.0001 0.0001
LR decay (Exp) 0.999996  0.999996

Table 4. Training parameters (two stages)

During the training of the model, half of the training it-
erations bypass quantization entirely. For the remaining half
quantization-enabled training, the codebook dropout method
is adopted to support training for multiple bitrates.

6. PARAMETER COUNTS AND COMPUTATIONAL
COMPLEXITY

We statistically analyzed the computational complexity and
parameter counts of the two models. The computational com-
plexity includes Short-Time Fourier Transform (STFT) oper-

ations and codebook distance computation. The parameter
counts and computational complexity are listed in Table 6.

Metric & Module Unit Track1l Track?2
Model Complexity

Encoder mmacs 192.75 937.69
Quantizer mmacs 7.73 9.83
Decoder mmacs 147.01 297.13
Parameter Count

Encoder M 0.973 5.145
Quantizer M 0.154 0.209
Decoder M 2.954 5.967

Loss functions weights for different t
listed in Table 5.

raining steps are

Loss lambda Stage1 Stage 2
Al 15.0 1.0
Ao 10.0 10.0
A3 2.0 2.0
A 1.0 1.0
A5 0.25 0.25
A6 1.0 1.0
A7 5.0 5.0
s 10.0 10.0

Table 5. Loss function weights (\) for
stages

different training
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Table 6. Comparison of Model Complexity (mmacs) and Pa-
rameter Count (M) between Track 1 and Track 2

7. SYSTEM LATENCY

The encoder accepts 20-ms audio frames as input. The de-
coder outputs 40-ms audio, consisting of 10 ms of prior au-
dio, 20 ms of current audio, and 10 ms of subsequent audio.
For seamless output, the 20 ms of current audio needs to be
overlapped and added with the 10 ms of subsequent audio, re-
sulting in a decoder latency of 10 ms. The total latency is the
sum of the encoder frame size (20 ms) and decoder latency
(10 ms), totaling 30 ms. The schematic diagram of system
latency is shown in Figure 2.
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Fig. 2. System latency description
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HORCODEC: HORNET BASED NEURAL AUDIO CODEC
FOR THE LRAC 2025 CHALLENGE TRACK 1

Qingbo Huang, Weihao Xiong, Congxin Zhang, Xinmin Yan

ByteDance

ABSTRACT

This paper is a description of our team’s submission model
for LRAC track 1, introducing the HORCODEC based on
HORNET, including model structure, training methods, and
other details. By introducing Horunit into classic methods
such as soundstreaemDAC model and RVQ, our model can
consistently improve dense prediction performance with less
computation, achieving transparent sound quality as much as
possible within the low complexity requirement by LRAC.

Index Terms— neural audio codec, residual vector quan-
tilization

1. INTRODUCTION

High quality and low latency audio encoding algorithms are
crucial in real-time communication field. With the rapid
development of deep learning technology in recent years,
audio codec based on deep neural networks, represented by
soundstream[[1]], DAC[2], have significantly improved com-
pression efficiency compared to traditional audio encoders
such as AAC and OPUS. However, the high latency and high
complexity of encoding and decoding are fatal flaws of deep
neural network-based audio codecs, which prevent them from
being widely used in real-time communication. Regarding
this issue, LRAC competition track 1 has made clear reg-
ulations on the complexity and delay of encoder encoding
and decoding. This is extremely challenging for deep neural
networks-based audio encoders. To achieve the ultimate goal
of low complexity, low latency, and transparent sound quality,
we have researched the current mainstream audio encoding
methods based on deep neural networks and have referred
to the forefront of deep learning in computer vision. Based
on the DAC and VOCOS frameworks, we have added the
improvement of the basic modules in the transformers de-
scribed in HORNETY3]]. Under the premise of satisfying the
requirements of complexity and latency in LRAC, the sound
quality of our proposed codec is as close as possible to the
original high-complexity DAC.
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2. MODEL STRUCTURE

The over view of the proposed codec is shown in Figure 1.
The input audio is divided into frames with a frame length
of 20ms. The output feature of the encoder network is coded
by RVQ, with 0.5kbps for each layer. On the decoder side,
the input feature is transformed to the frequency domain, and
then audio signals in the time domain are generated by ISTFT.

—>| encoder —»| RVQ L

decoder

Fig. 1. overview

2.1. Encoder Block

The encoder structure is shown in Figure 2. The first 1D con-
volution module is set to kernel size k=7. Then four residual
convolution modules are applied in sequence with each stride
=3, 4, 5, 8. For each residual convolution module, there are
3 residual units in it and each residual unit’s dilation is 1, 3, 9
respectively.

Convld
= Res-Conv Unit l SnakeBeta
4 v
3x Res Unit Comvid
4x Res-Conv Unit
2 N2
- Convid SnakeBeta
v =8 !
. v
Convid - l s
Convld
\L N
GRU “  ResUnit é

Fig. 2. encoder block
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2.2. Decoder Block

Inspired by Hornet in computer vision, we modified the mod-
ule based on 2D convolution design in Hornet and applied
it to audio signal processing. The decoding end receives the
quantized feature vectors, which are sequentially processed
through one 1D convolution module, 6 horunit modules, and
one 1D convolution module before being converted to the fre-
quency domain. The frequency domain signal is then trans-
formed back to the time domain through ISTFT. Each ho-
runit module contains one gConv gating module and one FNN
module in sequence, with the gConv gating order set to 3, as
shown in Figure 3.

i | DW
gConv
Convld
¢ v J |
H—— !
HorUnit MuL
- ) .
0 -
Layer Norm Fro}, C/2
Convid k |
‘ " i =
Convid \ UL
ISTFT % | & w
1 GELU activation Proj,C
* {
Convld
l MUL
FNN Ki)‘—/ v
‘ Proj,C
|

Fig. 3. decoder block

2.3. Quantizer

The features outputted from each frame undergo RVQ (Resid-
ual Vector Quantization) hierarchical residual layer coding,
consisting of 12 layers. Each layer has 1024 codeword candi-
dates, which requires 10 bits per layer during encoding. Given
that the encoding segment is divided into 20ms frames, the bit
rate for one layer of RVQ quantization stands at 0.5kbps. If
the target bit rate is 6kbps, all 12 layers of RVQ are employed;
whereas if the target bit rate is 1kbps, only the first two layers
of RVQ are utilized.

2.4. Computational Complexity
The parameter count and computational complexity of each
module in the model are shown in Table 1

2.5. System Latency

Since the encoder frame length is 480 points (i.e. 20ms) and
there are 240 points (i.e. 10ms) frame overlapping in the de-
coder, the system latency is 30ms, satisfying the challenge
requirement.
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Parameter Count Model Complexity

Enocder 0.98M 172.97TMMACs
Quantizer 0.19M 1.06MMACs

Decoder 3.01M 154.78MMACs
Total 4.18M 328.82MMACs

Table 1. Computational Complexity

3. TRAINING

3.1. Data Processing

On the premise of complying with the competition require-
ments, we have pre-processed the data provided by the offi-
cial to achieve data augmentation. When generating noisy
frequencies, randomly select SNR within a preset inter-
val. When generating reverberation data, follow the official
method and generate it with an appropriate reverberation ra-
tio. For multispeaker data, randomly adjust the volume of a
certain speaker.

3.2. Loss Setups

Training is carried out in the form of a generative adversary
mode,which is the same as SoundStream and DAC. As de-
scribed in Equation 1, the total loss of the model is consist of
GAN-based loss L4, RVQ commit loss L., RVQ code book
loss L, related to RVQ to improve the efficiency of code book
utilization. The reconstruct loss L, is set to ensure that re-
constructed signal is as consistent as possible with the refer-
ence input.

EZAg*£g+>\c*£c+/\r*ﬁr+>\r6*£7’e (1)

Since the reconstruction loss does not occupy the com-
plexity of encoding and decoding, we set a loss function as de-
tailed as possible to evaluate the quality of the reconstructed
signal, although this may slow down the training process. The
reconstruct loss is set with multiscale STFT loss L ¢+, mul-
tiscale MEL loss L,,,c;, PESQ[4] loss Lpeqq. The multiscale
STFT loss is set with window lengths of 256, 512, 1024 and
2048. The multiscale MEL loss is set with window lengths
of 32, 64, 128, 256, 512, 1024 and 2048, corresponding mel
bin counts of 5, 10, 20, 40, 80, 160, and 320, respectively.
All loss functions are weighted with appropriate coefficients
as part of the final loss.

Erecon = )\s * Lstft + )\m * £mel + Ap * ‘Cpeaq (2)
All the weight coefficients are described in Table 2.

3.3. Network Training Configurations

The learning rate is initialized at 0.0001 and decays by a fac-
tor of 0.999996 every epoch, as described in the exponential

14



loss weight  value

Xy 1.0
Ac 0.25
A 1.0
Are 1.0
As 10.0
Am 15.0
Ap 5.0

Table 2. loss weight configuration

learning rate scheduling technique. The Optimization is per-
formed with Adam, using betas of 0.8 and 0.99.

We train the networks with a batch size of 16 per GPU,
and 8 GPUs were used in training progress for Track 1 in total.
The model is trained for 500 epochs. We use the checkpoint
with the lowest reconstruction loss on the validation set. The
reconstruction loss configuration is described in subsection
3.2.
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NANOCODEC: TOWARDS LOW BITRATE AND LOW COMPLEXITY REAL-TIME NEURAL
AUDIO CODEC

Andong Li**, Pinglin Xu', Zhe Han', Lingling Dai**, Yiging Guo', Hua Gao', Xiaodong Li**,
Chengshi Zheng**

* Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
TByteDance, China
“University of Chinese Academy of Sciences, Beijing, China

ABSTRACT

In this report, we present NanoCodec, our submitted system for the
LRAC Challenge Track 1, which can effectively reconstruct target
waveform under ultra-low and low bitrates conditions. Specifically,
our architecture operates in the time-frequency (T-F) domain, where
we drop the phase and only encode the magnitude feature in the en-
coder side, and both are estimated in the receiver side. In addition,
we propose an efficient convolution-style attention block as the core
modeling unit. Given the strict constraint on the decoder complexity,
the omnidirectional phase and real-imaginary losses are introduced
to enable the effective joint optimization of target magnitude and
phase. The submitted system achieves a total latency of 30 ms and
a computational complexity of 685 MFlops (390M for the encoder
and 295M for the decoder), satisfying the challenge requirements.

Index Terms— Neural audio codec, low-complexity, low bi-
trate, real-time, speech transmission

1. INTRODUCTION

Audio codecs are designed to convert original waveforms into com-
pact bitstreams for transmission, followed by target decoding at the
receiver. In recent years, neural audio codecs (NACs) have surged in
popularity, propelled by the advancement of large language models
(LLMs). Compared to traditional methods, NACs offer both higher
compression ratios and reconstruction quality over [1}2]]. However,
while most studies leverage NACs as audio tokenizers for generation
tasks, real-time audio transmission remains underexplored [1} 3],
where computational cost, causality, and algorithmic delay are re-
garded as significant factors to hinder the deployment of NACs in
practical transmission scenarios.

LRAC Chalenge 2025 aims to gather research attention in real-
time (RT) audio transmission under strict constraints on training
dataset, calculation complexity and processing delayﬂ Specifically,
Track 1 is devised for transparent transmission, with a maximum
complexity of 700 MFlops (400 M for the encoder and 300 M for
the decoder), and a total latency < 30ms. To our best knowledge,
existing literature rarely satisfies these requirements, thus posing a
significant challenge for neural audio codec design.

To this remedy, in this paper, we present the proposed NanoCodec,
which contributes in both architecture design and optimization
regime. First, the proposed codec is based on time-frequency (T-F)
domain, where we ignore the phase and only magnitude is uti-
lized for feature encoding, and both targets are reconstructed in
the decoder. The rationale lies in that given the limited calculation
resource, it seems challenging for target coding or estimation in the

Uhttps://crowdsourcing.cisco.com/Irac-challenge/2025/
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time domain. As such, we employ the Fourier prior to alleviate the
learning difficulty. Besides, given the limited bit resource, separate
phase encoding can be trivial due to the wrapping effect of phase
component. Second, we adopt a convolution-style attention block
for spectral modeling, where the attention distribution is generated
via large convolution kernels to effectively aggregate the contextual
information. Third, it remains an open question for joint magnitude
and phase estimation, especially under limited calculation resource.
Motivated by [4], we employ an omnidirectional phase loss for
phase optimization, efficiently capturing differential relations be-
tween centering and neighboring phase bins. we further generalize
it into the real and imaginary (RI) parts of the spectrum, and propose
an omnidirectional RI loss. By incorporating the above-mentioned
tactics together, NanoCodec can reconstruct waveforms with high-
quality under both low complexity and low bitrate scenarios.

2. METHOD ILLUSTRATIONS
2.1. Overall Architecture

The overall diagram of the proposed NanoCodec is presented in
Fig. [T{a), where both encoder and decoder are operated in the T-F
domain. Given the input waveform x € RY, it is first transformed
into the spectrum X € CF*7 via the short-time Fourier transform
(STFT), where {F', T} denote the frequency and time axes, respec-
tively. Different from previous literature where magnitude and phase
are separately encoded [5], here we drop the phase and only pre-
serve the magnitude for feature extraction. The reasons are two-fold.
First, due to the restricted computational complexity in the encoder,
as well as limited bit resource, the modeling priority should be pro-
vided to the magnitude as it exhibits more clear structural patterns
over phase. Besides, phase usually exhibits random distribution due
to the intrinsic wrapping effect, and it can be trivial for separate fea-
ture extraction from phase. Motivated by [6], the energy-content
decoupling (ECD) layer is utilized to decouple the spectral energy
and content, which is reported to mitigate the extra input energy nor-
malization operation, given by:

I; = Concat (log (Ey), pé—t‘) e R, 1)
t

where E: denotes the calculated energy for the ¢-th input frame, and

Concat (-) is the concatenation operation along the feature dimen-

sion. After that, N. modeling units are stacked for modeing.

For the decoder, similar to the encoder, Ny modeling units are
stacked, and separate magnitude and RI heads are adopted for mag-
nitude and phase estimation, respectively. After that, the inverse
STFT operation is utilized for target waveform generation.
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Fig. 1. (a) Overall structure of the proposed NanoCodec; (b) Internal structure of the adopted LKCAB.
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Fig. 2. Illustration of the omnidirectional phase loss.

2.2. Large Kernel Convolution-Style Attention Block

We share the same modeling unit for both encoder and decoder, and
detailed internal structure is shown in Fig. [[(b). Given the input
H;_; € REXCin*T of the i-th block, where Cl,, represents the in-
put feature channel, it passes the attention branch and value branch to
obtain the attention and value feature maps{A;, V,;} € RBXCnxT
respectively. Here C}, indicates the hidden channel size. Motivated
by [7]], instead of adopting self-attention by calculating the pair-wise
similarity scores, we enable it via a depth-wise convolution opera-
tion with large kernels (LD-DWConv1d) to enhance the processing
efficiency. After that, a point-wise convolution (PConv1d) is adopted
to return to the original input space, followed by residual connection.
Note that, to reduce the overall computational complexity, we use the
group-convolution for PConvld. The causal setting is adopted, i.e.,
the padding operation is only applied along the past frames, and no
future information is involved. Formally, the process of the LKCAB
can be formulated as:

A; = LK-DWConvld (GELU (PConvld (LN (H;_1)))), (2)

V; =PConvld (H;—1), 3)
H; =H,_; +PConvld (A; ® V), @)
where “®” denotes the element-wise multiplication operation.
3. MISCELLANEOUS CONFIGURATIONS

3.1. Loss Setups

We incorporate the reconstruction, adversarial, and perceptual losses
for training. For the first term, we include the log-spectral ampli-
tude loss £, multi-resolution Mel loss L, consistency 10ss Lcons,
phase loss £, and RI loss L.
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The amplitude loss evaluates the mean-square error (MSE) be-

tween ‘5(’ and |X]| in the log-domain:

2
—log [X ¢ )

1 ~
Lo=— fZ o | X1 ®)

Inconsistency can arise when the generated spectrum in the T-
F domain is not necessarily equal to the STFT of it time-domain
counterpart [8]. To mitigate this issue, the consistent spectrum is

defined as S = STFT (iSTFT (S) ) , and consistency loss is given
by:

2

e o3 ([0 R (50
1t

2
) . (6)
2

Motivated by [9], we use multi-resolution Mel loss, which was
reported to yield better performance over the single-resolution ver-
sion, given by:

Lmet = FTS Z Z med W -XT

where {Xmel, X mel

+||zBse) -

; (N

1

} are the estimated and target Mel spectra, re-

spectively. (+) () denotes the Mel spectrum under the s-th resolution
scale. Here seven window sizes are adopted: {32, 64, 128, 256, 512,
1024, 2048}, and hop length set to window_length / 4. Besides, we
use mel bin sizes {5, 10, 20, 40, 80, 160, 320}.

Motivated by [4], we employ an omnidirectional phase loss, as
shown in Fig. ] To be specific, a specially devised kernel K €
R?*3%3 is applied to the estimated and target phase, to obtain the
omnidirectional differential between the centering and neighboring
phase bins:

By =DPxK, D =Pk, @®)

where “*” denotes the convolution operation, and {i,@} S

RO*FXT are the convolved results for estimated and target phase,

respectively. The phase loss can be calculated as:
1

We further generalize it into the RI loss. Concretely, we first
decouple the magnitude and phase, then the omnidirectional opera-
tion is employed to extract the differential phase representation, i.e.,

(©)]
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P, i)} The corresponding omnidirectional RI loss can be defined
as:

P ) (Rep ([%[) cos (#) - Rep 1Dy cos (&)

+ HRep (‘XD sin ('il') — Rep (|X]) sin (sf:’)
10

where Rep (-) denotes the tensor repeat operation, i.e., R™F*T —
RO*FXT The overall reconstruction 10ss Lrecon can be defined as:

['recon - /\aca + )\c['c + )\mel‘cm,el + ApL"p + /\ri[rriy (11)
where {Aa, Ac, Amel;s Ap, Ari} are the corresponding weighting
hyper-parameters, and set to {45.0, 20.0, 45.0, 50.0, 45.0}, respec-
tively.

For adversarial loss, we incorporate the multi-period discrimina-

tor (MPD) [10], multi-resolution STFT discriminator (MRSTFTD) [3]],

and multi-band discriminator (MBD) [9], and the hinge loss is
adopted to calculate the adversarial loss. For each sub-discriminator
in MPD, the 1-D raw audio waveform is reshaped into 2-D for-
mat with period p, then processed through consecutive Conv2D
layers and leaky ReLU for score computation. The periods are
set to {2, 3}[ﬂ For MRD, three sub-discriminators process mag-
nitude spectra via stacked Conv2d layers to calculate the dis-
criminative score. The {window_size, hop_size, nfft} are set to
(128,32,128), (256, 64, 256), (512,128,512), (1024, 256, 1024),
and (2048, 512, 2048), respectively. For MBD, we divide the over-
all spectrum into five band regions: {(0, 0.1), (0.1, 0.25), (0.25,
0.5), (0.5, 0.75), (0.75, 1.0)}. The {window_size, hop_size, nfft}
are set to (256, 64,256), (512,128,512), (1024, 256, 1024), and
(2048, 512, 2048), respectively. The trainable parameters of the
three discriminators are 3.4 M, 6.3 M, and 7.5 M, respectively. The
weighting hyper-parameters of the adversarial and feature-matching
losses are set to 1.0, 2.0, respectively.

Besides, the feature matching loss is also incorporated. For
perceptual-based loss, to promote the performance on objective met-
rics, we include the PESQ losﬂ and UTMOS losq’| for optimization.
We also utilize the pre-trained SCOREQ model’| and maximize the
output similarity score between the estimation and target waveforms.
Note that, to accelerate the network training, we only add the percep-
tual loss in the finetune stage, and the weighting hyper-parameters
{Apesqs Autmos; Ascoreq } are set to {5.0, 5.0, 5.0}, respectively.

3.2. Dataset Setups

For codec training, we use the speech clips from LibriSpeech [11]],
DNS-Challenge [12]], VCTK [13] and EARS [14]. Note that we did
not use the CommonVoices [[15] due to its relatively low quality. For
noise set, we include DNS-Challenge noise se WHAM! [16] and
FSDS50K [17]. For reverberation generation, we include the RIRs
from Open SLR 28[] and our synthesized 100 k RIR clips. To adapt
to practical acoustic scenarios, we adopt the on-the-fly (OTF) train-
ing strategy, that is, we randomly combine noise and reverberation
during the training process. For noise, the average SNR value is 15

2We empirically observe that more period settings can damage the perfor-

mance in the light-weight audio codec design.
3https://github.com/audiolabs/torch-pesq
“https://github.com/tarepan/SpeechMOS/tree/main
Shttps://github.com/alessandroragano/scoreq
Shttps://github.com/microsoft/DNS-Challenge
https://www.openslr.org/28/

2025 LRAC Challenge - System Description Report

dB, with the variance of 7.5 dB. The probability to include noise and
reverberation are 0.15 and 0.15, respectively. We also include the
multi-speaker case{ﬂ with the overlap ratio randomly sampled in the
range of [0.5, 0.95], and the probability is set to 0.15. To mitigate the
possible audio clip, we randomly rescale the waveform value from
the range of [0.218,0.917]. No other data augmentation strategies

1 ;Lé adopted. All training clips are chunked to 2.0 second to stabilize
the training.

3.3. Network Setups

For both STFT and iSTFT, the target sampling rate is 24 kHz. The
window size is set to 30 ms, with 10 ms overlap between adjacent
frames. 720-point FFT is adopted, leading to 361-D input features.
Thus, the overall system latency is 10 + 20 = 30 ms, which satis-
fies the challenge rule. For network encoder, the input and hidden
channel {Cj,,C),} are set to {372,372}, and N. = 6 blocks are
adopted. For the decoder, the input and hidden channel {Ci,, C)}
are set to {260,360}, and Ng = 6 are adopted. For both sides,
we set the kernel size of the LK-DWConv1d to 7, and the number
of groups for PConv1d is set to 2 to reduce the computational com-
plexity. For the quantization process, motivated by [9]], we adopt the
factorized quantizer, and the codebook dimension is set to 8. For
1 kbps and 6 kbps settings, {1,6} codebooks are utilized, respec-
tively, and the codebook size is set to 1024. As a result, the average
computational complexity of the encoder and decoder are around
390.18 MFlops (including 8.76 MFlops for quantization) and 295.12
MFlops. The trainable parameters of the encoder and decoder are
2.04 M and 1.48 M, respectively.

3.4. Training Setups

The training is based on the Pytorch-Lightning platform, and Two
NVIDIA A100 are employed. The total batch size is 32, and we
train the network for 1.5 M steps in total, where the discriminators
are updated per three steps to reduce the GPU assumption. For the
first 1.2 M steps, only reconstruction loss and adversarial loss are
adopted. After that, we incorporate the perceptual loss in the remain-
ing finetune stage. The AdamW optimizer [18] is employed, and the
learning rate is initialized at 2e-4, with the exponential decay in the
batch level, and the decay rate is set to 0.999996. Besides, the ex-
ponential moving average (EMA) strategy for generator update, and
the decay rate is set to 0.999.
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ABSTRACT

Recent advancements in end-to-end neural speech codecs en-
able compressing audio at extremely low bitrates while main-
taining high-fidelity reconstruction. However, low compu-
tational complexity and low latency remain crucial for real-
time communication. In this paper, we propose VoCodec,
an audio codec model featuring a computational complexity
of only 349.29 M multiply-accumulate operations per second
(MAC/s) and a latency of 30 ms. Additionally, we cascade
a neural network for speech enhancement at the front end to
extend its capabilities of noise reduction and dereverberation.
Experimental results demonstrate that the two systems deliver
superior performance across multiple evaluation metrics.

Index Terms— audio codec, low computational resource,
low bitrate, generative adversarial network, speech enhance-
ment

1. INTRODUCTION

Recently, audio codec models have achieved significant
progress in recovering high-quality speech at low bitrates
[1]. However, existing models with excellent performance
often suffer from two critical drawbacks: high computational
complexity and non-causality, rendering them unsuitable for
real-time communication [2, [3]. Track 1 of the 2025 Low-
Resource Audio Codec (LRAC) Challenge focuses on audio
compression that balances low latency, low bitrate, and high
speech quality under constrained computational resources.
Track 2 further takes the interference from noise and rever-
beration in real-world scenarios into account.

In this paper, we introduce our two systems submitted to
the challenge. The system for Track 1, named VoCodec, is
an audio codec model requiring low computational resources.
Based on Vocos [4]], we construct VoCodec’s encoder and de-
coder. To reduce computational overhead and latency, audio
codec is performed directly in the time-frequency domain and
all upsampling and downsampling operations are eliminated
in the encoder and decoder. For Track 2, UL-UNAS [3]], a
lightweight model for speech enhancement is cascaded at the
front end of VoCodec to equip our whole system with speech
enhancement capability.

TEqual contribution.
*Corresponding author: lujing@nju.edu.cn
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Fig. 1: The architecture of the proposed model

2. PROPOSED MODEL

2.1. Architecture
Based on the VQ-GANs framework [6l], the architecture
of the proposed VoCodec is depicted in Figure [l Given
a speech signal x, it is first passed through the Short-Time
Fourier Transform (STFT). Then the logarithmic magnitude
and phase of the complex spectrogram are concatenated along
the frequency dimension. To reduce the computational com-
plexity, a fully connected layer is employed to reduce the
input’s frequency dimension to 192.

The subsequent encoder follows the improved Vocos ar-
chitecture in WavTokenizer[7]], which consists of 6 stacked

20



ConvNeXt blocks and a PosNet module. 1D convolution with
causal padding is used and the inverted structure from Con-
vNeXt is retained with an intermediate dimension of 216.
A kernel size of 7 is employed for the depth-wise convolu-
tional layers. The PosNet incorporates 4 basic ResNet blocks
using a kernel size of 3 and a causal self-attention block is
added after the second ResNet block. For the decoder, it is al-
most a mirror-symmetric structure of the encoder. However,
to constrain the receiver-side’s computational complexity, the
inverted design from the ConvNeXt is removed, and the num-
ber of groups in the convolutions of the ResNet blocks is set
to 2.

VoCodec’s quantizer uses the Residual Vector Quantiza-
tion (RVQ) strategy [8]. Following the improved RVQ pro-
posed in DAC [2], the quantizer of our model is applied with
6 layers, each containing 1024 codewords. With an encoder
frame rate of 100 Hz, this corresponds to 1 kbps per layer, and
6 kbps in total.

Since we perform audio codec in the time-frequency do-
main, intuitively, the multi-scale STFT discriminator [9]] can
further improve the quality of the output audio. A set of win-
dow lengths [128, 256, 512, 1024, 2048] is used, and the hop
length is fixed to the window length / 4. Moreover, only this
discriminator is employed throughout the training process,
while other types (e.g. MSD and MPD) are not used.

2.2. Loss Functions

When training UL-UNAS, we apply the negative scale invari-
ant SNR (SI-SNR) [10] loss and the power-compressed spec-
turm loss as the loss functions.

For VoCodec, the generator 108S Lgeperator COMprises
three components: the multi-scale mel-spectrogram L1 loss
[2] as the reconstruction loss L., the adversarial loss L
with the L1 feature matching loss L4 involved, the same
codebook L.,4. and commitment loss L. in VQ-VAE [11]
for codebook updates. The discriminator is trained separately
with the adversarial loss L,. Formally,

Lice = ”M (33) -M (‘i‘)||1 (D
Ly = |t - D@)|; @)
Lfeat:2ZHDl(x)—Dl(5c) , (3)
l
Lgenerator :)\TSCLYCC + /\g Lg + /\featheat

+ )\code HSg[Ze] - ek”g +/\C ||Z€ - Sg[ek} Hg (4)

Lcode Lc
Ly =1 = D()[5 + D@5 ®)

where x and & denote the target and reconstructed speech,
respectively, M(-) is the mel-spectrogram transform, D(-)
is the discriminator output, D'(-) represents the feature map
of the [-th discriminator layer, z. is the quantizer output,
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Table 1: Latency and computational complexity of the Track
1 baseline system.

Transmit Side Receive Side  Overall
Encoder RVQ Decoder
Buffering Latency (ms) 10 0 0 10
Algorithmic Latency (ms) 0 0 20 20
Compute Complexity MMACs)  194.56  1.96 144.82 349.29

Table 2: Latency and computational complexity of the system
for Track 2.

Transmit Side Receive Side  Overall
SE Encoder RVQ Decoder

Buffering Latency (ms) 0 10 0 0 10

Algorithmic Latency (ms) 20 0 0 20 40

Compute Complexity (MMACs) 935.36  194.56 1.96 144.82 1284.66

and ey is the codebook vector. During training, the mel-
spectrograms are computed with multiple window lengths of
[32, 64, 128, 256, 512, 1024, 2048] and a fixed hop length set
to window length / 4. Meanwhile, different mel bin sizes of
[5, 10, 20, 40, 80, 160, 320] are employed.

Finally, we assign loss weights of 15.0 for the multi-scale
mel-spectrogram loss, 1.0 for the feature matching loss, 2.0
for the adversarial loss, and 1.0, 0.25 for the codebook and
commitment loss, respectively.

2.3. Two Training Stages
We first train the speech enhancement network UL-UNAS

and the codec model VoCodec independently. After their
training is completed, we use UL-UNAS as the front end to
perform noise suppression and dereverberation on the input
audio. Subsequently, we freeze the parameters of UL-UNAS
and only update the parameters of the entire codec model to
enable it to compensate for the spectral distortion caused by
the enhancement network.

3. EXPERIMENTAL AND RESULTS
3.1. Training Data Preparation
All training data follow the cleaning and preprocessing proce-
dures defined in the baseline of the Challengeﬂ Considering
the attention module in the codec model, we extract 3-second
speech segments for training VoCodec.

During the training process of UL-UNAS and the final
cascade system, each speech sample is combined with back-
ground noise, where signal-to-noise ratio (SNR) is uniformly
distributed between -5 dB and 30 dB. In addition, reverber-
ation is randomly introduced, and the final training target is
speech signals with early reverberation.

3.2. Implementation Details

STFT is computed using a square root Hanning window of a
length of 30 ms, a hop length of 10 ms, and an FFT length of
720, resulting in a buffering latency of 10 ms and an algorith-
mic latency of 20 ms due to the inverse STFT processing.

Ihttps://github.com/cisco-open/lrac_data_
generation
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Table 3: Performance Comparison on the Open Test Set for Track 1

Bitrate Model Condition ScoreQ-ref | UTMOS 1T Sheet-SSQA T PESQ1T Audiobox AE-CE 1
Clean 0.35 3.23 3.84 2.67 5.28
Baseline Noisy 0.82 2.76 3.12 1.81 4.37
6 kbps Reverb 1.13 1.32 2.22 1.18 3.43
Clean 0.17 3.73 4.22 3.20 5.66
VoCodec Noisy 0.70 3.10 343 2.03 4.82
Reverb 0.94 1.55 2.80 1.21 3.98
Clean 1.15 1.44 1.84 1.15 3.90
Baseline Noisy 1.29 1.33 1.72 1.11 3.40
Reverb 1.36 1.26 1.85 1.07 2.94
1 kbps
Clean 0.40 3.24 3.55 1.95 5.31
VoCodec Noisy 0.83 2.67 2.93 1.56 4.43
Reverb 1.10 1.48 2.19 1.17 3.59
Table 4: Performance Comparison on the Open Test Set for Track 2
Bitrate Model Condition ScoreQ-ref | UTMOS 1T Sheet-SSQA T PESQ1T Audiobox AE-CE 1
Clean 0.43 2.97 3.55 2.13 2.97
Baseline Noisy 0.75 2.56 292 1.73 4.60
Reverb 0.92 1.79 2.67 1.29 4.25
6 kbps
Clean 0.18 3.74 4.21 3.06 5.68
VoCodec Noisy 0.50 3.26 3.62 2.19 5.00
Reverb 0.88 2.02 2.70 1.38 4.20
Clean 1.01 1.37 2.07 1.21 3.96
Baseline Noisy 1.15 1.35 1.95 1.18 3.70
Reverb 1.12 1.32 2.43 1.15 3.55
1 kbps
Clean 0.41 3.21 3.50 1.92 5.29
VoCodec Noisy 0.68 2.81 3.00 1.63 4.75
Reverb 1.04 1.75 2.20 1.26 3.95

As shown in Table [T} our proposed VoCodec comprises
3.47 M parameters and has a computational complexity of
349.29 MMAC/s EL with the receiver-side computation ac-
counting for only 144.82 MMAC/s. In Track 2, we adopt
the same network architecture from UL-UNAS [5]], and scale
up the number of intermediate channels to [48, 96, 108, 108,
64], which results in a computational complexity of 935.36
MMAC/s. The whole system has a computational complexity
of 1.28 GMAC/s with 5.34 M parameters shown in Table [2]
The total latency is 50 ms, of which 20 ms is attributed to the
additional look-ahead in UL-UNAS.

We train UL-UNAS and VoCodec independently on 8
NVIDIA RTX 4090 GPUs. The batch size for UL-UNAS
is set to 4 per GPU, while that for VoCodec is 24 per GPU.
UL-UNAS and VoCodec are trained for 400 and 1000 epochs,
with 1250 and 500 iterations per epoch, respectively. During
training, we use the AdamW optimizer [12] and employ a

2The computational complexity is calculated by ptflops: https://
github.com/tel-0s/ptflops
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linear warmup scheduler followed by cosine annealing. In
the joint training phase, we adopt the same configuration as
used in the training of VoCodec, and conduct the training
process for a total of 500 epochs.

Meanwhile, we employ a systematic strategy to select the
final checkpoint of the model. The validation objective met-
rics are evaluated at regular intervals during training and the
checkpoint with the best performance is selected.

3.3. Results
Evaluation on the test set is conducted using the official met-
rics provided by the Challenge. Scoreq-ref [13], UTMOS
[14], Audiobox AE-CE [15], PESQ [16], and Sheet-SSQA
[[17, [18] are selected to compare the quality and naturalness
of speech recovered by the decoder of the codec.

The experimental results are summarized in Table [3] and
Table ] It can be seen that our two systems outperform the
official baseline modelsﬂ across all metrics, particularly on the

3https://github.com/cisco-open/espnet/tree/
master/egs2/lrac
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clean and noisy test sets.

4. CONCLUSION

This paper introduces VoCodec, an efficient lightweight
speech codec, and our two systems in the LRAC 2025 Chal-
lenge. Experiments show that our systems achieve superior
performance over the baseline models.
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LOW RESOURCE AUDIO CODEC CHALLENGE TRACK2: DENOISING CODEC

Haoran Zhao, Zixiang Wan, Guochang Zhang, Runqgiang Han, Jiangiang Wei

Anker Innovations, Beijing, China

ABSTRACT

We propose a frequency-domain Denoising Codec for the
2025 Low-Resource Audio Codec (LRAC) Challenge that
jointly performs speech coding and noise suppression under
strict constraints on complexity, latency, and bitrate. By inte-
grating enhancement into the coding pipeline and employing
residual vector quantization (RVQ), the system allocates bits
to perceptually important speech components while reducing
the noise. A three-stage training process combines spectral
reconstruction with adversarial objectives to ensure stable
optimization and high-quality output. Experiments across
clean, noisy, and reverberant conditions demonstrate consis-
tent improvements in both coding fidelity and robustness.

Index Terms— speech codec, noise suppression, low re-
source, LRAC

1. INTRODUCTION

Neural audio codecs are emerging as powerful alternatives to
traditional speech coders such as AMR-WB and Opus, deliv-
ering improved perceptual quality and flexible bitrate adap-
tation. Recent advances, SoundStream [1], Encodec [2], and
DAC [3] employ autoencoder-based architectures with RVQ
and adversarial training, achieving high-quality reconstruc-
tion at low bitrates.

In parallel, neural speech enhancement has advanced
rapidly.  Architectures such as U-Net [4], DCCRN [5],
and DeepFilterNet [6] demonstrate robust noise suppression
across diverse acoustic environments. Leveraging convo-
lutional encoder—decoder backbones, recurrent layers, and
attention mechanisms, these models effectively disentangle
clean speech from noise and reverberation.

However, most codecs and enhancement systems are de-
signed and optimized independently: codecs focus primarily
on compression efficiency and reconstruction fidelity, while
enhancement models target noise reduction and dereverbera-
tion. Under realistic constraints on complexity, latency, and
bitrate, separating enhancement from coding can be subopti-
mal. A unified approach enables efficient bit allocation for
perceptual speech quality and effective noise suppression.

The 2025 LRAC Challenge provides an ideal platform for
such integrated solutions, emphasizing neural speech codecs
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Fig. 1. The proposed model architecture.

operating under realistic noise and reverberation with strict
limits on complexity, latency, and bitrate. It encourages uni-
fied designs that jointly address speech coding and enhance-
ment within a low-resource framework. Motivated by this,
we propose a frequency-domain Denoising Codec jointly op-
timized for noise suppression and speech coding.

2. METHOD

2.1. Architecture

The proposed end-to-end Denoising Codec is illustrated in
Figure 1. It comprises an encoder, an RVQ module [1, 2],
and a decoder, and operates entirely in the frequency domain.
The noisy input signal is first transformed into a spectrogram
via STFT, which is processed by the encoder to generate
downsampled latent vectors; these vectors are quantized by
RVQ and then reconstructed by the decoder through upsam-
pling. The resulting spectrogram is finally converted back to
the time domain using iSTFT. Noise suppression is implicitly
achieved throughout the encoding—decoding process.

The encoder consists of a complex convolutional layer
followed by 4 FdownBlocks and RNNBlocks, which perform
downsampling, feature extraction, and implicit denoising.
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Table 1. Evaluation results for different bitrates and acoustic conditions.

Clean Noisy Reverb
Bitrate Method sheet scoreq audiobox utmos  pesq sheet scoreq audiobox utmos  pesq sheet scoreq audiobox utmos  pesq
ssqa ref AE_CE ssqa ref AE_CE ssqa ref AE_CE
kbps Baseline | 2.07 1.01 3.96 1.37 121 1.95 1.15 3.70 1.35  1.18| 243 1.12 3.55 132 1.15
Proposed | 3.44  0.43 5.23 3.18 207 3.11 0.61 4.9 2.94 1.8 | 227 095 4.32 205 138
6Kkbps Baseline | 3.55 043 5.25 297 213292 075 4.60 256 173|267 092 4.25 .79 129
Proposed | 422 0.18 5.62 380 334|378 041 5.17 347 241|129 074 4.62 230 1.6l

Each FdownBlock includes two 1x1 convolutions and one
downsampling convolution, incorporates a gating mechanism
to enhance feature extraction, and adopts a Snake2D acti-
vation [7] to improve harmonic structure modeling. Each
RNNBIock contains batch normalization, a GRU, and a 1x1
convolution, with residual connections to preserve gradient
flow. The decoder mirrors the encoder with 4 RNNBlocks and
FupBlocks for upsampling, followed by a final convolutional
layer for spectrogram reconstruction. Due to computational
constraints, each FupBlock contains only a transposed con-
volution and a Snake2D activation.

The model is trained using a loss function that combines
complex spectrogram loss, multi-scale Mel-spectrogram loss,
and a GAN-based loss, where Multi-Period (MPD) and Multi-
Resolution (MRD) discriminators [8] are employed to capture
both fine-grained temporal details and spectral characteristics.

2.2. Training Stages

We employ a three-stage training pipeline. (1) A quantizer-
free encoder—decoder model is trained exclusively for the
denoising task, optimized solely with a complex spectral loss
to establish a clean and stable representation space for sub-
sequent quantization. (2) Quantizer Integration: A quantizer
is then incorporated into the pre-trained denoising model,
and the entire system is jointly optimized for both denois-
ing and codec objectives while still employing the complex
spectral loss. This staged integration stabilizes training by
initializing the quantizer within a well-structured representa-
tion space, thereby maintaining denoising performance while
enabling effective quantization. (3) Perceptual Fine-tuning:
Finally, the model is fine-tuned to enhance the perceptual
audio quality by replacing the loss function with a multi-
scale Mel-spectrogram reconstruction loss and introducing
adversarial objectives via MPD and MRD. This combination
further improves the naturalness and fidelity of the recon-
structed audio.
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3. EXPERIMENTS

3.1. Datasets

The 2025 LRAC Challenge provides training datasets com-
prising speech, noise, and room impulse response (RIR) sub-
sets. All datasets are first resampled to 24 kHz, followed by
curation to form finalized training subsets. Specifically for
the noise dataset, we utilize a pre-trained audio understand-
ing model to predict audio labels, and further filter out "dirty”
data samples bearing speech labels.

To further enhance the generalization capability of the
model, training data is synthesized online using randomly
sampled parameters at each training step. The data augmen-
tation is detailed as follows: Noisy conditions are simulated
by mixing speech and noise at a probability of 0.75, using a
signal-to-noise ratio (SNR) uniformly sampled from the range
of -5 to 15 dB. Reverberation is simulated by convolving the
speech signal with a RIR at a probability of 0.4. For the cor-
responding target speech, the RIR undergoes truncation com-
mencing 1 ms after its peak amplitude prior to convolution.

3.2. Implementation Details

The proposed model has a total computational complexity
of 2595M FLOPs and 3.9M parameters. Specifically, the
encoder together with the RVQ module accounts for 1997M
FLOPs and 2.5M parameters, while the decoder requires
598M FLOPs and 1.4M parameters. The system is designed
for a sampling rate of 24kHz, with a frame length of 720
samples and a frame shift of 312 samples. No future frames
are utilized, resulting in an algorithmic latency of only 30ms.
The RVQ module contains 6 codebooks, each with a size of
8192 entries (equivalent to 13 bits) and a vector dimension
of 16. During inference, the RVQ can dynamically select
between using 1 to 6 codebooks, enabling bitrate scalability
from 1kbps to 6kbps.

Due to computational constraints, the channel configura-
tions of the encoder and decoder are asymmetric. The Fdown-
Blocks in the encoder have channel sizes of [48, 144, 192, 288]
with strides [6, 5, 4, 3], while the upsampling layers in the de-
coder have channel sizes of [24, 48, 124, 288].
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The MPD employs period settings of [2, 3, 5, 7, 11], while
the MRD adopts [3072, 1536, 768, 384, 206, 126, 78] as win-
dow sizes [9]. Additionally, The generator is trained with a
learning rate of 3 x 10~%, while the discriminator uses 1 x
10~*. The Adam optimizer is employed throughout all train-
ing stages.

3.3. Results

Our evaluation employs Versa [10], the official evaluation
toolkit recommended by the 2025 LRAC Challenge, which
provides standardized implementations of metrics such as
sheet_ssqa, score_ref, audiobox AE_CE, UTMO, and PESQ.
Experiments are conducted under three acoustic conditions:
clean, noisy, and reverberant. Leveraging the RVQ module,
which supports variable-bitrate operation by selectively dis-
carding codebooks during inference, we further assess the
model’s performance at 1 kbps and 6 kbps.

The evaluation results are summarized in Table 1, where
the proposed method demonstrates significant improvements
over the baseline across all metrics under all three acous-
tic conditions and at both 1 kbps and 6 kbps bitrates. The
evaluation across different acoustic conditions reveals distinct
characteristics of Denoising Codec. In clean scenarios, the
model demonstrates superior performance in speech compres-
sion and reconstruction. For noisy and reverberant conditions,
it exhibits strong robustness by effectively suppressing back-
ground noise and reverberation. However, the audio quality
under reverberant conditions is somewhat compromised com-
pared to other scenarios.

4. CONCLUSION

We presented a unified Denoising Codec that integrates
speech coding and noise suppression in the frequency do-
main, enabling scalable bitrate via RVQ and delivering high
perceptual quality across diverse acoustic conditions. The
staged training strategy stabilizes optimization and enhances
overall performance while meeting strict low-resource con-
straints. Future work will focus on further improving recon-
struction quality under strict low-resource constraints.
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EFFICIENT REAL-TIME AUDIO CODEC WITH INTEGRATED SPEECH ENHANCEMENT
TECHNIQUES

Weihao Xiong, Congxin Zhang, Xinming Yan, Qingbo Huang
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ABSTRACT

This paper presents our submission model for the 2025
Low-Resource Audio Codec (LRAC) Challenge, which is
an efficient real-time audio codec with integrated speech
enhancement techniques. The model is composed of three
primary components: an encoder, a quantizer, and a decoder.
To achieve better performance, the encoder module encodes
the noisy audio into clean embeddings with the constraint
of a pretrained codebook. Then the decoder decoders the
clean embedding to audio wavforms. This system operates
with a 50ms latency and a computational complexity of 2.68
GFLOPS, with the decoder contributing 0.58 GFLOPS.

Index Terms— Speech Enhancement, audio codec

1. OVERVIEW OF OUR SYSTEM

This model is primarily built upon advancements from previ-
ous codecs and vocoders [1, 2, 3, 4]. The model operates in
the frequency domain, where an STFT (Short-Time Fourier
Transform) is applied before the encoder and an iSTFT (In-
verse STFT) is performed after the decoder. Within the
model, only the magnitude of the STFT is processed.

The STFT and iSTFT processes utilize a 50ms window
length (1200 samples at 24000hz) and a 12.5ms hop size (300
samples), resulting in a total latency of 50ms. The lkbps
codebook consists of 5,792 numbers, producing a bitrate of
1kbps, calculated as = - log,(5792). For the 6kbps con-
figuration, the model extends the 1kbps codebook with six
additional codebooks, each containing 1,024 numbers. This
setup results in a total bitrate of 5.8kbps, computed as ﬁ .
(log,(5792) + log,(1024) % 6)).

The model includes a total of 11.96 million trainable pa-
rameters and has a computational complexity of 1.34 GMacs
(2.68 GFLOPS).”

2. ENCODER

The encoder module, referred to as the FullBandEncoder,
processes input data through three main components: an input
feature extractor (in_fc), a series of eight sequential blocks
(blocks), and an output projection head (out_head). The
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overall architecture has 8.2M parameters and a compu-
tational complexity of 662.66MMACs (Million Multiply-
Accumulate operations), which accounts for 50.829% of
the total parameters and 39.592% of the total MACs in
the network. The encoder aims to capture temporal and spa-
tial dependencies in sequential data while maintaining high
computational efficiency.

2.1. Input Feature Extraction (in_fc)

The first component of the encoder is the input feature extrac-
tor (in_fc), which processes the raw input data. This mod-
ule has 1.34M parameters and contributes 108.31MMACs
(8.294% Params, 6.471% MACsS). It consists of the follow-
ing layers:

* ChannelNormalization: This normalization layer sta-
bilizes the input data by re-scaling the channel dis-
tributions. As a computationally free module (0%
Params, 0% MACs), it improves model training and
convergence behavior.

* Convld Sequential Block:

— ConstantPadld: Padding is applied (padding=(2,
0)) to ensure dimensional alignment prior to con-
volution. This layer does not add any computa-
tional cost.

— Convld: A convolutional layer with 1.34M pa-
rameters, configured with 602 input channels
(in consistancy with stft freq bins), 740 output
channels, a kernel size of 3, and a stride of
1. This operation extracts local features while
increasing dimensionality to match the hidden
size.

2.2. Sequential Blocks (blocks)

Motivated by [5], the second component consists of eight
Large Kernel Convolution-Style Attention Blocks (LK-
CABs), which are implemented through a ModuleList.
Each block has 833.98k parameters and a computational
complexity of 67.37MMACs (5.170% Params, 4.025%
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MACs). Collectively, the blocks account for the primary
processing in the encoder.

Each LKCAB focuses on capturing temporal and spatial
dependencies through its attention module, value module,
and output projection layer. These are described in detail
below:

2.2.1. Attention Module (attn)

The attention module processes sequential data through a
combination of normalization, convolutional operations, and
non-linear activations in the following pipeline:

¢ ChannelNormalization: A normalization layer pre-
pares the input channels for processing without adding
to the computational complexity (0% Params, 0%
MAC:s).

¢ First Convld Sequential Block:

— ConstantPadld: Padding ensures consistent in-
put dimensions without adding parameters or
MAC:s.

— Convld: This convolutional layer has 275.28k
parameters and operates on 740 input and out-
put channels. It uses a kernel size of 1, stride
of 1, and groups=2, enabling separable convolu-
tion for efficient feature extraction. It accounts
for 22.2dMMAC:s, or 1.706% Params, 1.329%
MAGC:s.

¢ GELU Activation: A GELU (Gaussian Error Lin-
ear Unit) introduces non-linearity into the pipeline.
GELU has no parameters and a negligible compu-
tational cost of 59.94KMACs (0.004% MACs), but
it provides smooth and continuous activation for im-
proved gradient flow and feature learning.

¢ Second Convld Sequential Block:

— ConstantPadld: Padding aligns the input se-
quence for the subsequent convolutional layer.

— Convld: A depthwise convolutional layer con-
figured with 8.14k parameters. It operates on
740 input and output channels, with a kernel
size of 9, stride of 1, and groups=740, allowing
each channel to be processed independently. This
layer consumes 599.4KMACs (0.050% Params,
0.036% MACs) and captures channel-specific
features over a larger receptive field.

The attention module has a total of 283.42k parameters
and contributes 22.9MMACs (1.757% Params, 1.368%
MACs). By combining separable convolutions, non-linear
activation, and depthwise operations, it efficiently extracts
both local and global features from sequential data.
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2.2.2. Value Module (v)

The value module processes the input in parallel to the atten-
tion module and comprises:

* ConstantPadld: Padding ensures dimensional consis-
tency without adding computational cost (0% Params,
0% MAC:s).

* Convld: A convolutional layer with 275.28k param-
eters configured identically to the first Convld layer
in the attention module (740 input and output chan-
nels, kernel size 1, stride 1, groups=2). It contributes
22.24MMAC:s, or 1.706% Params, 1.329% MAC:s.

The combined output of the attention module and the
value module is connected by a residual connection, ensur-
ing stable training and strong information flow.

2.2.3. Projection Layer (pro7j)

The output projection layer refines features by projecting the
channels back to the hidden dimensionality. This layer in-
cludes:

* ConstantPad1ld: Padding is applied to preserve spatial
consistency.

* Convld: Another convolutional layer with 275.28k
parameters identical to those in the value module. It
contributes 22.24MMACs (1.706% Params, 1.329%
MACsS).

2.3. Output Projection Head (out_head)

The final component of the encoder processes the output of
the eight sequential blocks to produce the desired feature
representation. The output projection head has 189.95k pa-
rameters and contributes 15.37MMACs (1.177% Params,
0.918% MAC:Ss). It consists of:

» ConstantPadld: Padding ensures dimensional align-
ment.

* Convld: A convolutional layer with 740 input chan-
nels, projecting down to 256 output channels. It uses
a kernel size of 1 and stride of 1. This operation re-
duces dimensionality while retaining relevant features
for downstream tasks.

2.4. Overall Design and Applications

The encoder module leverages channel normalization, sep-
arable convolutions, depthwise operations, and residual
connections to achieve efficient and expressive feature ex-
traction. Its modular design makes it suitable for sequential
data tasks such as audio signal processing. By balancing
computational complexity (662.66MMACSs) and parameter
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count (8.2M), the encoder strikes an excellent trade-off be-
tween performance and resource efficiency.

3. QUANTIZATION

As previously mentioned, both the 1kbps and 6kbps config-
urations share a base codebook consisting of 5,792 entries,
which is quantized by a vector quantizer (FactorizedVec-
torQuantize) [6] with a computational complexity of 381.07
MMacs.

The 6kbps configuration introduces additional codebooks,
which are quantized in two groups using another quantizer
called SimVQ1D[7] with a computational complexity of ap-
proximately 1.2 MMacs.

The encoder always produces encodings at 6kbps, while
in the training phase, the quantizer randomly drops the out-
puts from the second codebook. During inference, the de-
coder reconstructs the waveform using the specified codebook
configuration.

4. DECODER

The decoder shares the same fundamental building blocks as
the encoder but adopts two distinct configurations depending
on the training stage. During stage 1, the hidden dimension
is set to 600 to improve the performance of codebook train-
ing. In stage 2 and during inference, the hidden dimension
is reduced to 530 to prioritize computational efficiency while
maintaining strong performance.

To further address computational complexity constraints,
the block dimensionality in the decoder is fixed at 530, and
the number of blocks is limited to 6. This optimization re-
duces the computational complexity of the decoder to 296.96
MMAC S, meeting the competition’s requirements while en-
suring robust performance.

Apart from the hidden dimension and the number of
blocks, the input dimension of the decoder is set to 256,
which differs from that of the encoder.

For waveform reconstruction, the decoder incorporates
multiple head modules to recover both the magnitude and
phase components of the frequency-domain signal. These
include:

* Mag Head: Outputs the magnitude of the STFT.

* R Head and I Head: Jointly output the phase informa-
tion of the STFT.

Each head (Mag Head, R Head, and I Head) consists of a
ConstantPadld layer followed by a Conv1d layer. These
modules share the same structure, with a 530-channel input,
a 601-channel output, and a kernel size and stride of 1.

The final step in the decoder is the ISTFT (Inverse Short-
Time Fourier Transform) layer, which reconstructs the time-
domain signal from its frequency-domain representation.
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This layer introduces no additional trainable parameters or
computational overhead, ensuring an efficient mapping back
to the audio waveform.

5. TRAINING SETUP

We trained the model using data provided by the LRAC chal-
lenge requirements, with augmentation applied on the fly
during training. The augmentation module simulates audio
degradation by adding noise, reverberation, and other arti-
facts. It generates corresponding pairs of noisy and clean
audio for training purposes.

The training process consists of two stages. In the first
stage, the model is trained using clean speech as both input
and output. During this phase, we aim to simultaneously learn
the codebooks for both 1kbps and 6kbps configurations. In
the second stage, the quantization module is frozen, and the
encoder and decoder are retrained using noisy speech as the
input and clean speech as the output.

This approach allows the codebooks to constrain the en-
coder to focus exclusively on encoding clean speech. On one
hand, the denoising functionality is embedded within the en-
coder, which is a larger component of the model. On the
other hand, the codebooks are specifically designed to sup-
port clean speech transmission, making them highly effective
for this task.

Several loss functions are employed during the training
process, including the multi-resolution STFT loss, multi-
resolution Mel loss, and phase loss. Additionally, for adver-
sarial loss, we utilize the Multi-Period Discriminator (MPD),
Multi-Resolution STFT Discriminator (MRSTFTD), and
Multi-Band Discriminator (MBD) to improve audio qual-
ity and realism.
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ABSTRACT

This paper presents Enhance-NanoCodec, which is designed to per-
form codec transmission in conjunction with simultaneous denoising
and dereverberation under the constraints of low complexity, low
bitrate and real-time processing. Our architecture operates in the
time-frequency (T-F) domain, where we discard the phase and only
encode the magnitude features on the encoder side—both the mag-
nitude and phase are estimated on the receiver side. To scientifically
allocate the complexity ratio of the model between the encoder and
decoder, and to utilize the codebook more efficiently, we designed
a multi-stage training scheme, which excellently accomplishes the
joint task of speech enhancement and coding. In addition, we pro-
pose an efficient convolution-style attention block as the core model-
ing unit. Enhance-NanoCodec achieves a total latency of 50 ms and
a computational complexity of 1.86 GFlops (0.58 for the decoder),
and is submitted to the LRAC Challenge Track 2.

Index Terms— Neural audio codec, speech enhancement, low-
complexity, low bitrate, real-time

1. INTRODUCTION

Audio codec technologies are foundational to on-demand streaming.
End-to-end Neural audio codecs (NACs) with learnable encoders,
including SoundStream [1]] and DAC [2], have attracted significant
research interest. They stand out for high-quality audio at very low
bitrates, a performance target conventional audio coding struggles to
achieve. However, several critical issues persist as key focus areas
for advancing the practical deployment of NACs in real-world trans-
mission scenarios, including high computational cost, strict causal-
ity constraints, non-negligible algorithmic delay, and the ongoing
challenge of ensuring clear speech transmission amid complex back-
ground noise.

The objective of Track 2 in the LRAC 2025 Challenge [T_] is to
achieve the integration of speech enhancement and coding under
the joint constraints of low latency, low computational complexity,
real-time processing, and high quality. To this end, we propose the
Enhance-NanoCodec architecture. This system is engineered to ful-
fill the challenge constraints while maintaining robust performance,
and its capabilities are fully optimized through a multi-stage training
scheme for high-quality speech enhancement and coding.

First, Enhance-NanoCodec operates in the time-frequency (T-F)
domain for high-fidelity spectral detail reconstruction. As target cod-
ing or estimation in the time domain becomes especially challenging

Uhttps://crowdsourcing.cisco.com/Irac-challenge/2025/
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when computational resources are limited, we disregard the phase
and utilize only the magnitude for feature encoding, with both mag-
nitude and phase reconstructed in the decoder, leveraging a Fourier
prior to ease the learning process. Second, we adopt a convolution-
style attention block for spectral modeling. It uses large convolution
kernels to generate the attention distribution, effectively aggregating
contextual information. Third, joint magnitude and phase estimation
under limited resources remains an open challenge. Following [3]],
we use an omnidirectional phase loss for phase optimization, which
captures differential relations between center and neighboring phase
bins. We further extend this to the spectrum’s real and imaginary
(RI) parts, proposing an omnidirectional RI loss. Finally, inspired
by [4], we design a multi-stage training scheme to further enhance
the codebook’s efficiency in leveraging clean speech data within
Track 2, while optimizing task allocation between the encoder and
decoder. This comprehensive training strategy enables the model to
accomplish the dual objectives of high-quality speech enhancement
and reconstruction, all while fully complying with the challenge re-
quirements.

2. METHOD ILLUSTRATIONS

2.1. Overall Architecture

The overall structure of the proposed Enhance-NanoCodec is pre-
sented in Fig. a). Given the input waveform 2 € R”, we first
transform it into the time-frequency (T-F) domain using the short-
time Fourier transform (STFT), obtaining the complex spectrogram
X € C"*T where F and T denote the number of frequency bins
and time frames, respectively. For the encoder input, we drop the
phase counterpart and use the normalized magnitude spectrogram
|X| € RF*T along with the spectral energy, which is extracted via
the energy-content decoupling (ECD) layer. Then the encoder ex-
tracts the frequency information and obtains highly compressed hid-
den representations, which are matched with a sequence of discrete
codes C' € RNe*P*T through residual vector quantization (RVQ),
where N, is the codebook number and D is the feature dimension.
The decoder takes the quantized codes as input and reconstructs both
the magnitude spectrogram and the phase spectrogram. Finally, we
recover the enhanced waveform & € R’ by applying the inverse
STFT (iSTFT). Both encoder and decoder share the same modeling
unit, which is composed of a stack of Large Kernel Convolution-
Style Attention Block (LKCAB) as shown in Fig. [[[b). The pro-
posed LKCAB uses large convolution kernels to generate the atten-
tion distribution, effectively aggregating contextual information.
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Fig. 1. (a) Overall structure of the proposed NanoCodec; (b) Internal structure of the adopted LKCAB.

2.2. Multi-stage Training Scheme

In Track 2 of the LRAC 2025 Challenge, the computational budget
is intentionally biased toward the transmitter side, with a substan-
tially higher complexity allocation compared to the receiver. Since
the track specifically focuses on enhanced speech, we introduce a
multi-stage training strategy aimed at improving the codebook’s ef-
ficiency in representing clean speech while achieving a more bal-
anced computational distribution between the encoder and decoder.
The detailed training procedure is elaborated as follows.

2.2.1. Stage 1: Training codebook of clean speech

To ensure that all information in the codebook is dedicated to trans-
mitting valid clean speech, only clean speech is used during the train-
ing process. It is important to note that the codebook for both 1 kbps
and 6 kbps were finalized in this stage. To better guide the encoder’s
performance and avoid being constrained by the decoding bottleneck
of the decoder, a decoder with a complexity exceeding that required
by the challenge is employed for speech encoding during this stage.

2.2.2. Stage 2: Training a speech-enhancement encoder

In Stage 2, an encoder with noise reduction capability is trained. At
this stage, various speech augmentations were applied to the data,
including the addition of noise and reverberation, as well as other
augmentations mentioned in 3.3} During this phase, the codebook
and decoder learned in Stage 1 were fixed, with only the encoder
undergoing training.

2.2.3. Stage 3: Training a low complexity decoder

In Stage 3, the objective was to train a decoder that meets the compu-
tational complexity requirements and is compatible with the encoder
and codebook obtained in the previous two stages. During this stage,
both the codebook and the encoder were fixed.

3. MISCELLANEOUS CONFIGURATIONS

3.1. Network Setups

For both STFT and iSTFT, the window length is set to 50 ms with
a hop size of 12.5 ms. No auxiliary look-ahead nor algorithmic de-
lay is introduced, resulting in a total system latency of 50 ms. The
number of LKCABs used in the encoder is set to 12 with a hidden
dimension of 600, while the decoder uses 10 LKCABs with a hidden
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Module Para. M) Complexity (MFlops)
Encoder 7.84 1266.66
Quantizer 0.08 16.32
Decoder 3.59 578.63

Table 1. Model parameter and computational complexity.

dimension of 420. The number of codebooks is set to 1 with a code-
book size of 5792 for the 1 kbps transmission rate. For the 6 kbps
transmission rate, we reuse the codebook from the 1 kbps setup. Ad-
ditionally, we introduce the grouped RVQ, where the codebooks are
divided into two groups, with each group containing 3 codebooks
and a codebook size of 1024. The theoretical transmission rate is
1.00 kbps for 1 kbps transmission and 5.80 kbps for 6 kbps transmis-
sion. The total trainable parameter count for Enhance-NanoCodec is
11.51 M, and the total computational complexity is 1.86 GFlops,
where the decoder accounts for 0.58 GFlops. The detailed model
parameters and computational complexity of each module are pre-
sented in Table[Tl

3.2. Loss Setups

We use both reconstruction and adversarial losses during Stage 1 and
Stage 2 training. The reconstruction loss consists of multi-resolution
STFT loss, multi-resolution Mel loss, as well as our proposed omni-
directional phase loss, which captures differential relations between
center and neighboring phase bins. For adversarial training, we
employ a multi-period discriminator (MPD), multi-resolution STFT
discriminator (MRSTFTD), and multi-band discriminator (MBD),
along with a feature matching loss. In Stage 3, to further improve
the performance of the low-complexity decoder, we additionally
incorporate PESQ loss, UTMOS loss, as well as our proposed om-
nidirectional RI loss for optimization, where the former two provide
perceptual supervision and the latter enables finer joint magnitude-
and-phase reconstruction.

3.3. Dataset Setups

The training corpus employed in this study is sourced from the
LRAC 2025 Challenge. For speech, we use the speech clips
from LibriSpeech [5], LibriVox [6], VCTK [7], EARS [8]] and
Multilingual Librispeech [9]. For noise set, we include Au-
dioset [[10], Freesound [11]](from the DNS5 challengeEI), FMA [12],

Zhttps://github.com/microsoft/DNS-Challenge
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WHAM! [13] and FSDS50K [14]. For reverberation generation, we
include the room impulse responses (RIRs) from Open SLR 2 and
Motus [15]. Further refinement was performed by excluding audio
segments that were excessively short or exhibited abnormally low
energy, thereby ensuring the quality and consistency of the training
samples.

During model training after stage 1, noisy and reverberant sig-
nals were synthesized on-the-fly via random sampling from the
speech, RIR, and noise datasets. Specifically, under noisy speech
conditions, the signal-to-noise ratio (SNR) was set to range from -5
dB to 20 dB. To enhance model generalization, we applied additional
data augmentation to 20% of the training corpus, implementing spe-
cific techniques including bandwidth limitation, amplitude clipping,
and packet loss concealment (PLC).

3.4. Evaluation Metrics

In this study, model performance is initially evaluated using both
the non-intrusive metric UTMOS [16] and the intrusive metric
PESQ [17]], which facilitated rapid evaluation and informed iterative
adjustments to the model architecture and training procedures. For
the final selection of the model, comprehensive human listening
tests were conducted to ensure robust perceptual quality.

3.5. Training Settings

We optimized the model using AdamW optimizer [18] with its de-
fault betas (0.8, 0.99) and an initial learning rate of 0.0002. The
learning rate is scheduled using an ExponentialLR scheduler with a
gamma of 0.999998 per epoch. Additionally, we set the batch size to
16 and the duration of each sample to 5 seconds. For each training
stage, the number of training steps was set to a range of 500,000 to
1,000,000, depending on the convergence of the evaluation metrics.
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ABSTRACT

Speech codec is a key challenge in hands-free commu-
nication systems, where on-device deployment requires
real-time processing under strict constraints on bitrate
and computational complexity. Meanwhile, real-world
acoustic conditions demand integrated speech enhance-
ment (SE). In this paper, we propose a novel Progressive
Refinement (PR) strategy to build a high-performance
codec for joint speech coding and enhancement. With
this strategy, we introduce PR-Vocodec, a low-latency,
high-fidelity, and low-bitrate codec, which can per-
form noise reduction and dereverberation simultaneously
with low computational overhead. Experimental results
demonstrate that the PR-Vocodec delivers superior per-
formance across multiple evaluation metrics.

Index Terms— progressive refinement, audio neural
codec, speech enhancement.

1. INTRODUCTION

The 2025 Low-Resource Audio Codec (LRAC) Challenge
focuses on codecs with low computational complexity,
low latency, and low transmission bandwidth, as well as
multi-task codecs coupled with front-end enhancement
tasks. In this paper, we introduce PR-~Vocodec, our sys-
tem submitted to the Challenge. The system is built
upon the Vocos architecture [I] and employs a six-layer
Residual Vector Quantizer (RVQ) [2] in the quantiza-
tion module, supporting both 1 kbps and 6 kbps bi-
trates. The training follows a three-stage progressive re-
finement (PR) strategy. Stage 1 focuses on constructing
a high-fidelity teacher model. Stages 2 and 3 progres-
sively train the student model, enhancing its noise sup-
pression and dereverberation capabilities. This progres-
sive refinement framework not only preserves the qual-
ity of the codebooks but also significantly improves the
speech enhancement performance and generalization of
the student model under low-bitrate constraints.

TEqual contribution.
*Corresponding author: lujing@nju.edu.cn
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2. PROPOSED METHOD

2.1. Codec architecture

As illustrated in Fig[l] we design the backbone architec-
ture based on the Vocos [I] framework and employ it as
the decoder. The decoder consists of six 1D ConvNeXt
[3] blocks with a hidden dimension of 558, followed by a
post-processing network comprising four ResNet blocks
and a causal self-attention module [4]. The encoder is
constructed as a mirror-symmetric counterpart of the de-
coder, performing feature extraction of the input speech
at the transmitting end through a reversed information
flow. Since the encoding stage is coupled with the SE
task, we adopt an asymmetric parameter configuration to
enhance the encoder’s feature extraction and multi-task
processing capabilities. Specifically, the encoder consists
of twelve 1D ConvNeXt blocks with the hidden dimen-
sion increased to 1096. In addition, we employ an RVQ
module to encode the embeddings extracted by the en-
coder. The RVQ consists of six quantization layers, each
with a codebook size of 1024.

2.2. PR training strategy

The PR strategy enables the model to achieve high-
fidelity audio coding while simultaneously performing
high-quality speech enhancement, including noise sup-
pression and dereverberation. As illustrated in Fig. [2]
the training process consists of three progressive stages.

In Stage 1, the model follows the standard audio
codec training paradigm to obtain a low-bitrate, high-
fidelity codec, which serves as the teacher model. The
training process adopts a generative adversarial net-
work (GAN) framework, where a multi-scale short-time
Fourier transform discriminator (MS-STFTD) [5] is em-
ployed to impose multi-scale time—frequency constraints
on the reconstructed audio, thereby enhancing the accu-
racy in frequency band reconstruction.

In Stage 2, the encoder of the student model is trained
from scratch to perform joint coding and enhancement.
Specifically, the clean speech is fed into the encoder of
the teacher model to generate target embeddings, while
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Fig. 2. The Schematic of the PR training strategy. The
red blocks are updated during the training stage, while
the white blocks are frozen.

the noisy and reverberant speech is passed through the
student encoder. During training, the two sets of embed-
dings are aligned, guiding the student encoder to produce
representations that closely match those of the teacher
model when processing clean inputs. This alignment ef-
fectively implements noise and reverberation suppression
within the encoder module. Crucially, the codebook re-
mains frozen throughout this stage, ensuring that the
decoder’s input space remains consistent with that of
the teacher model.

Stage 3 is the dual process of Stage 2, aiming to en-
hance the robustness of the student decoder and thereby
improve the system’s generalization to noisy or rever-
berant inputs. During this stage, the encoders and RVQ
modules of both teacher and student models are frozen.
Clean and noisy speech pairs are processed in parallel,
aligning the decoder outputs and the reconstructed wave-
forms to promote consistent decoding behavior. This
process ensures the output of the student decoder closely
approximates the output of the teacher decoder for clean
speech, enhancing the robustness against variations in
encoder output. Furthermore, adversarial training is in-
corporated in this stage by employing the discriminator
pre-trained during Stage 1 to refine the decoder outputs
of the student model. To balance the training progress
between the decoder and the discriminator, we update
the decoder five times for each discriminator update to
ensure balanced convergence and maintain stable adver-
sarial training.
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2.3. Loss function

The training of the teacher codec utilizes a composite
loss function within a GAN framework. The total gener-
ator loss, Lgeneraror, is a weighted sum of multiple com-
ponents: the multi-scale mel-spectrogram reconstruction
loss Lyec [6], the generator adversarial loss Lg, the fea-
ture matching loss Ly.q; applied to the discriminator’s
features, the codebook loss Lcoge, and the commitment
loss L.. It is formulated as:

Lyec = IM(x) = M (D); (1)
Lg=1-D@)I3 (2)
Liear =2 Y ||D'(x) = D'(®)]), (3)
1
Lgenerator =ArecLrec + /1ng + Ateat Lfeat
+ Acode ”Sg[ze] - ek”g +4c ”ze - Sg[ek] ”%
Leode L.

(4)

In the above equations, x and x denote the target and
reconstructed speech, respectively, M(-) is the mel-
spectrogram transform, D(-) is the discriminator output,
D'(-) represents the feature map of the I-th discrimina-
tor layer, z. is the quantizer output, and e; is the
codebook vector. sg[-] denotes the stop-gradient oper-
ation, indicating that its gradients are detached from
the computation graph and do not participate in back-
propagation. The multi-scale mel-spectrogram loss Lyec
is computed using window length samples [32, 64, 128,
256, 512, 1024, 2048], with the hop length fixed at 1/4 of
each window length. Each scale uses different mel bins
of [5, 10, 20, 40, 80, 160, 320]. Loss weights are set as:
Arec = 15, Ag = 2, Afeat = 1, Adcode = 1, Ac = 0.25. The
discriminator is trained with adversarial loss L4, which
is formulated as:

Lqg=1-D@)3+1D®)I3 (5)

In Stage 2, the loss function Lpgr_encoder coOmbines
the mean squared error (MSE) and cosine distance be-
tween the teacher and student embeddings, weighted by
1.0 and 0.2, respectively.
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Table 1. Objective Performance Comparison on the Open Test Set.

Bitrate Model

Condition ScoreQ-ref UTMOS Sheet-SSQA PESQ Audiobox AE-CE

Clean 0.435 2.972 3.548 2.126 5.381

Baseline  Noisy 0.753 2.562 3.122 1.723 4.754

Reverb 0.913 1.803 3.273 1.295 4.381

Clean 0.164 3.790 3.917 3.215 5.786

6kbps  gtage 2 Noisy 0.348 3.594 3.706 2.498 5.540
Reverb 0.364 3.517 3.883 2.092 5.597

Clean 0.158 3.785 3.929 3.244 5.795

Stage 3 Noisy 0.317 3.613 3.755 2.444 5.592

Reverb 0.340 3.560 3.890 2.116 5.659

Clean 1.008 1.371 2.079 1.207 4.163

Baseline Noisy 1.150 1.351 2.520 1.180 3.918

Reverb 1.117 1.323 3.065 1.153 3.723

Clean 0.386 3.306 3.609 1.959 5.470

Lkbps  Gtage 2  Noisy 0.470 3.236 3.537 1.753 5.370
Reverb 0.466 3.202 3.666 1.657 5.392

Clean 0.364 3.305 3.648 1.991 5.490

Stage 3 Noisy 0.463 3.242 3.541 1.786 5.383

Reverb 0.465 3.211 3.626 1.674 5.301

In Stage 3, the outputs of the decoder’s final hidden
layer are optimized using the same loss function as in
Stage 2, denoted as Lpr-_decoder- Meanwhile, the de-
coded speech is trained with the same loss formulation
as in Stage 1, denoted as Lgeneraror- The overall training
objective for the decoder at this stage is therefore given
by:

thage—S = LPR—decoder + Lgenerator' (6)

3. EXPERIMENTAL SETUP

3.1. Training data preparation

In Stage 1, the teacher model is trained on the EARS,
VCTK, Common Voice, LibriTTS, Multilingual Lib-
riSpeech, and DNS Challenge 5 datasets. All speech
data are resampled to 24 kHz. In Stages 2 and 3, we
extend the student model’s capability in noise suppres-
sion and dereverberation by constructing an additional
noise dataset derived from VCTK, WHAM, FSD50K,
and FMA, covering a diverse range of noise types. Dur-
ing training, each clean speech sample is mixed with
background noise with a probability of 80%, where
the signal-to-noise ratio (SNR) is uniformly sampled
between -5 dB and 30 dB. To simulate reverberant con-
ditions, room impulse responses (RIRs) from the Motus
dataset are applied, with each sample augmented with
reverberation at a probability of 50%. All training data
are processed following the cleaning and preprocessing
procedures specified in the official baselin(ﬂ

Thttps://github.com/cisco-open/lrac_data_generation
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3.2. Implementation Details

In Stage 1, the teacher model is trained for 1000 epochs
with a batch size of 192, using the AdamW optimizer
with a cosine annealing learning rate scheduler. In Stage
2, the student encoder is trained to replicate the teacher
model’s embeddings. This stage runs for 500 epochs with
a batch size of 40, optimized by RAdam with an expo-
nential decay scheduler. In Stage 3, the student decoder
is trained for 200 epochs with a batch size of 192 and
optimized by the AdamW optimizer with an exponential
learning rate decay scheduler.

3.3. Computational complexity and latency

The computational complexity of the teacher model
is 349.29M multiply—accumulate operations per second
(MACs/s)? (with the decoder accounting for 281.57M
MACs/s) and the model contains 3.47M parameters.
The overall student model comprises 12.37M parame-
ters and operates with a computational complexity of
1.25G MACs/s (with the decoder accounting for 281.29M
MACs)

The teacher model incurs an algorithmic latency of
30 ms due to the 720-point STFT. In contrast, the stu-
dent model has a total latency of 50 ms, comprising the
same 30 ms algorithmic latency and an additional 20 ms
buffering latency introduced in the encoder.

2The computational complexity is calculated by ptflops: https:
//github.com/tel-0s/ptflops.
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4. RESULTS

Evaluation on the open test set is conducted using the
official metrics provided by the challenge, which contain
five objective metrics: ScoreQ_ref [7], UTMOS [g], Sheet-

SSQA [9], PESQ [10], and Audiobox Aesthetics_CE [I 1]E|

Experimental results are summarized in Table The
results show that PR-Vocodec significantly outperforms
the baseline across all scenarios at both bitrates, partic-
ularly demonstrating strong robustness and generaliza-
tion for reverberant data. Furthermore, the comparison
between Stage 2 and Stage 3 shows that the decoder
retraining enhances the model’s adaptability and con-
sistency, thereby validating the effectiveness of the PR
training strategy in achieving high-fidelity speech coding
with strong enhancement capability.

5. CONCLUSION

This paper introduces our proposed PR training strategy
designed for joint speech coding and enhancement tasks,
and our PR-Vocodec model submitted to the LRAC
Challenge. The proposed approach achieves competi-
tive performance in the LRAC challenge, surpassing the
baseline by a large margin across different bitrates and
input conditions.
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ABSTRACT

End-to-end speech codecs enable efficient low-bitrate communi-
cation, but most existing approaches lack integrated enhancement,
which limits performance under noisy and reverberant conditions.
While recent work has attempted to combine speech enhancement
with neural codecs, these methods are often too complex to be
practical in low-resource scenarios. In this paper, we present a
lightweight speech enhancement codec specifically designed for
resource-constrained settings. The proposed system adopts a three-
stage training strategy that first establishes strong compression
capability and then progressively improves robustness to noise and
reverberation. Experimental results demonstrate that our model
achieves superior performance in challenging noisy and reverber-
ant environments while meeting strict constraints on computational
complexity, latency, and bitrate.

Index Terms— low complexity, speech codec, speech enhance-
ment

1. INTRODUCTION

Speech codecs compress speech signals while preserving perceptual
quality [1]. Recent end-to-end models such as SoundStream [2],
DAC [3]], and L3AC [4] employ encoder—decoder architectures with
quantization modules like RVQ or FSQ [5], achieving high-quality
reconstruction. However, as most are trained only on clean speech,
they lack robustness to real-world noise, making integrated enhance-
ment essential for practical deployment.

Joint enhancement—compression has thus emerged as an active
research direction. Early approaches, such as SoundStream and
SEStream [6], were trained directly on noisy—clean pairs. More
recent methods have explored the use of domain-specific code-
books (7], masked generative models [8 9]], or latent space regres-
sion within pretrained codecs [10, [L1]. While these approaches
have demonstrated promising performance, they often come with
high computational complexity, which hinders their applicability in
real-time, resource-constrained scenarios.

To address these limitations, we propose a Lightweight Codec
for Joint speech compression and enhancement (LJCodec), an end-
to-end framework designed to perform both tasks within a unified
system. The main contributions of this work are summarized as fol-
lows.

* We propose LICodec, a Lightweight Codec that jointly per-
forms speech compression and enhancement.

* We propose a three-stage training strategy that strengthens
noise robustness by training on clean speech, aligning en-
coder representations from noisy to clean embeddings, and
adapting the decoder with the fixed encoder.

2025 LRAC Challenge - System Description Report

2. METHOD

2.1. Model Architecture

The entire model follows the same structure as the baseline. The
encoder consists of five EncoderBlocks, each composed of several
residual convolutional blocks followed by a strided convolution for
downsampling. The downsampling factors across the five blocks are
2, 2, 3, 4, and 5, respectively. The quantizer employs Residual
Vector Quantization (RVQ), where multiple codebooks are cascaded
such that each deeper codebook encodes the residual of the previous
one. The decoder mirrors the encoder architecture and performs
upsampling using transposed convolutions with stride equal to the
kernel size, thereby reducing the complexity introduced by the up-
sampling operations. To reduce the computational burden at the re-
ceiver side and satisfy LRAC requirements, the convolutional chan-
nel width in the decoder is set to about 3/4 of that in the encoder.
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Fig. 1: Proposed stage-wise training strategy.
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2.2. Stage-wise Training

To improve robustness against noisy speech, we employ a three-
stage training strategy (Fig. [T), starting with clean speech training
and followed by independent fine-tuning of the encoder and decoder.

Stage 1. Base Model Training on Clean Speech. In the first
stage, we train the codec model exclusively on clean speech using
a combination of reconstruction loss, feature loss, commitment loss,
and adversarial loss, following the same loss setup and adversarial
training strategy as EnCodec.

Let x be the speech to be encoded, and % be the speech generated
by the decoder. Reconstruction loss is used to measure the difference
between Z and z in both the time domain and the time-frequency
domain. The loss in the time and time-frequency domains can be
expressed as

b = ||z — #[|3, )

and

= DS () - S5 (@)|h+

se{26,...,211} t

|[og S¢ () — log St (2)[l2, 2

respectively, where S§ represents the t-th frame in the 64-bin mel-
spectrogram with window length s and hop length s/4. The recon-
struction loss £, is the sum of the time domain loss and the time-
frequency domain loss:

lrec = 1000 (z, &) + L5 (z, £). 3)

Feature loss £f..¢+ measures the difference between x and 2 in

the feature space defined by the discriminators. It is calculated by
taking the mean absolute difference between the inner layer output

feature maps of the discriminators for the generated speech and the
corresponding target speech.

1 A
Licat = By L ; |Dr,i(x) — D, (2)]] 4

where L is the number of intermediate layers, and Dy, (I €
{1,...,L}) denotes the output of the I-th layer of discriminator
k.

Quantizer commitment loss £, describes the difference between
the input and output of the quantizer. It is used to reduce the discrep-

ancy between the quantizer’s embedding space and the encoder’s
output, which can be expressed by:

C
by = |lze — qe (2c) |13, (5)
c=1

where q. represents the c-th vector quantizer.

In adversarial training, the following two adversarial losses are
used to optimize the codec and the discriminators. The adversarial
loss £q4v_g for codec is

ladvg = Ex [(1—D(2))*] , (6)
while £44,_q for discriminators is
Cadva =Ex [(1 — D(2))* + (1 +D(2))?] . (7)
The total loss for the codec is defined as follows:

Zg = )\recé'rec + )\featzfeat + )\qéq + Aadv,géadv,ga (8)
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Table 1: Objective evaluation results at 1 kbps and 6 kbps under
clean, noisy, and reverberant conditions.

ScoreQ UTMOS PESQ
1 kbps
clean 0.39 3.99 1.58
noisy 0.49 3.82 1.44
reverb 0.52 3.61 1.27
6 kbps
clean 0.27 4.17 2.21
noisy 0.45 3.96 1.77
reverb 0.5 3.63 1.38

Table 2: Computational complexity (MFLOPS) and latency (ms) of
different modules.

Component Compute  Latency
Encoder 1946 20
Quantizer 48 0
Decoder 594 20
Buffering latency - 10
Total 2588 50
and the discriminator loss /4 is
Lq = Xadv.dladv.d- ©)

where )\ are constant weights used to balance each component.

In our experiments, we trained the model with weights Arec =
)\feat = )\adv,g = )\adv,d = 1, and )\q = 1000 .

Stage 2. Encoder Alignment Fine-tuning. Inspired by Sound-
Stream, we argue that the enhancement task should be performed
before quantization, on the encoder side, to minimize the impact of
noisy latent representations on both the quantizer and decoder. Un-
like NoiseRobustVRVQ (NRVRVQ) [[L1], which optimizes the en-
tire model on noisy speech, we perform alignment fine-tuning only
on the encoder.

Specifically, we duplicate all modules before the quantizer into
a trainable encoder, denoted as £y, and a frozen encoder, denoted
as Ec¢. Noisy speech x,, is fed into Ex, while clean speech x. is fed
into £c. The output of £c serves as the supervision target for En.
The En is optimized with a mean squared error loss:

lo = E[(En(zn) — Ec(zc))?] - (10)

No additional losses (e.g., reconstruction loss) are introduced, as this
design forces the encoder to rapidly adapt to the speech enhancement
task on top of its established compression capability.

Stage 3. Decoder Adaptive Fine-tuning. Although the latent
distribution after Stage 2 is close to that of Stage 1, slight mismatches
remain and lead to reconstruction artifacts. We fine-tune both the
quantizer and the decoder to better adapt to these new representa-
tions. The encoder £y is frozen, while the quantizer Q, decoder
Dn, and the discriminators are optimized using the same loss func-
tions as in Stage 1. This strategy improves the overall audio quality
with minimal overhead.

3. EXPERIMENT

3.1. Datasets

We trained our codec using the datasets specified by LRAC. In Stage
1, the model was trained on clean speech drawn from LibriVox
data from the DNS5 Challenge [12f, LibriTTS[13], VCTK[14],
EARS|15], CommonVoice[16], and Multilingual LibriSpeech[17].
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In Stage 2 and Stage 3, we constructed degraded speech by mixing
clean utterances with noise and reverberation. The noise sources
included Audioset[18]] and FreeSound[19] noises from the DNS5
Challenge, WHAM! noise[20], speech-filtered FSD50K[21]], and
Free Music Archive[22]. Noisy speech was synthesized by mixing
clean utterances with these noises at signal-to-noise ratios (SNR)
uniformly sampled between —5 dB and 30 dB. Reverberation was
simulated using RIR datasets from OpenSLR28, the DNS5 Chal-
lenge, and Motus [23]. All corpora were downsampled to 24 kHz
for both training and evaluation. For benchmarking, we used the
official LRAC validation and test sets to ensure fair and consistent
comparisons.

3.2. Training and Evaluation Settings

Training Settings: The entire model is trained on a single RTX
4090 GPU with a batch size of 32. The number of iterations for
Stage 1, Stage 2, and Stage 3 are set to 150k, 50k, and 150k, respec-
tively.

Evaluation Metrics: For preliminary offline testing during
the development stage, we adopt PESQ[24], UTMOS[25], and
ScoreQ[26] as objective quality metrics. For the official bench-
mark evaluation, we rely on the toolkit provided by the organiz-
ers, which reports a more comprehensive set of metrics, includ-
ing sheet_ssqga [27], scoreg.ref, audiobox AE_CE [28],
utmos, and pesqg. For model efficiency, we report both the com-
putational complexity and the latency of the proposed codec.

3.3. Speech Quality Metrics

Table[T]summarizes the objective evaluation results. On clean speech
compression, LJCodec outperforms the baseline at both 1 kbps and
6 kbps. For degraded speech with additive noise and reverberation,
LJCodec also demonstrates consistent improvements over the base-
line.

3.4. Model Efficiency

Table 2] presents the computational complexity and latency of our
model. The overall complexity is below 2600 MFLOPS, with the
receive-side (decoder) complexity under 600 MFLOPS. The end-to-
end latency is less than 50 ms, fully meeting the challenge require-
ments.

4. CONCLUSIONS

We presented LJCodec, a low-complexity end-to-end codec that
jointly performs speech compression and enhancement. Through
a three-stage training strategy, the model achieves robustness to
noise and reverberation while maintaining a low bitrate, low latency
(<50ms), and low computational complexity (<2600 MFLOPS).
Experiments on the LRAC benchmark show consistent improve-
ments over the baseline, demonstrating the practicality of LJCodec
for real-world low-resource speech communication.
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ABSTRACT

The advancement of speech interfaces operating in resource-
constrained environments drives the need for neural speech
codecs that achieve a critical balance among computational
efficiency, minimized bitrate, and low latency. These codecs
must also maintain high speech quality under challenging
acoustic conditions, integrating robust enhancement capa-
bilities to counteract real-world noise and reverberation. To
address these challenges, we present KD-Vocodec, an effi-
cient knowledge distillation (KD) framework for joint speech
coding and enhancement. The proposed system achieves su-
perior performance by training a student model to replicate
the intermediate representations of a high-fidelity teacher
model through feature-level knowledge distillation, thereby
delivering high-quality audio at a latency of 30 ms and scal-
able bitrates from 1 to 6 kbps. Rigorous evaluation on a public
test set confirms the superior capability of KD-Vocodec.

Index Terms— neural speech codec, knowledge distilla-
tion, speech enhancement

1. INTRODUCTION

The deployment of neural speech codecs on devices with
constrained resources requires balancing critical trade-offs
between bitrate, computational complexity, latency, and ro-
bustness to acoustic noise. The 2025 Low-Resource Audio
Codec (LRAC) Challenge focuses on this problem, calling
for codecs that perform effectively under realistic and noisy
conditions. Motivated by this challenge, a novel framework
called KD-Vocodec is proposed in this paper for joint speech
coding and enhancement. Its key innovation is a feature-level
knowledge distillation technique, which enables the system
to learn compact and noise-invariant representations. The re-
sulting codec achieves a low algorithmic latency of 30 ms and
supports variable bitrates, delivering enhanced performance
without a significant increase in computational complexity.

2. PROPOSED METHOD

Our proposed framework leverages feature-level knowledge
distillation to achieve joint speech coding and enhancement

tEqual contribution.
*Corresponding author: lujing @nju.edu.cn
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under strict latency and bitrate constraints. The system ar-
chitecture, depicted in Fig[T] is built upon a VQ-GAN-based
[[L] clean teacher codec. The overarching design employs a
teacher-student paradigm wherein a student encoder is trained
to replicate the intermediate representations of a pre-trained
teacher encoder, facilitating the learning of clean features.
However, the final system retains the original decoder weights
without fine-tuning.

2.1. Teacher codec architecture

We adopt Vocos [2] as the backbone of our teacher codec ar-
chitecture, due to its superior performance in speech synthe-
sis. Specifically, a mirrored variant of the Vocos structure
is employed as the encoder—decoder backbone. The input
waveform is first converted into a time—frequency represen-
tation via STFT. The complex spectrogram is split into mag-
nitude and phase components, which are concatenated along
the frequency dimension and fed into the network. This com-
bined input is projected into a latent space with dimension D
via a linear layer. The encoder consists of multiple convo-
lutional blocks inspired by ConvNeXt [3l], aiming to extract
deep hierarchical features. Each block contains a 1D depth-
wise convolution with weight normalization, followed by a
pointwise convolution. To ensure strict causality and avoid
algorithmic delay, all temporal padding is causal. To enhance
sequence modeling, ResNet blocks are incorporated. Inspired
by WavTokenizer [4], a causal self-attention mechanism is
inserted after the second convolutional block. The resulting
features are passed to the quantizer, which uses a Residual
Vector Quantizer (RVQ) [S] with 6 layers and gradient-based
codebook updates. Linear layers before and after quantiza-
tion map features between the quantization dimension and a
lower-dimensional space.

The encoder configuration is as follows: STFT window
size is 720 samples with a hop size of 180; hidden dimension
D is 256; the encoder stack contains 12 ConvNeXt layers,
each with an expansion channel size of 896. The decoder
mirrors the encoder’s structure but with reduced capacity to
meet receiver-side computational constraints: D is 252, the
number of ConvNeXt layers is 4, and the expansion channel
size is 256. The projection dimension for RVQ is set to 8.
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Fig. 1. Architecture of the proposed KD-Vocodec framework. (a) Overall pipeline of the teacher codec; (b) Detailed structure
of the ResNet Block; (c) Detailed structure of the ConvNeXt Block; (d) Architecture of the student encoder.

2.2. Student encoder

The student encoder is designed by augmenting the encoder
with several key components. This design is motivated by
the hypothesis that these augmentations will enable a more
robust derivation of clean embeddings from distorted speech
inputs. Specifically, causal self-attention modules are incor-
porated after each ResNet block, except for the final one,
to capture long-range contextual dependencies under causal
constraints. Furthermore, a two-layer LSTM layer is intro-
duced immediately preceding the final convolutional layer to
enhance temporal sequence modeling. A skip connection is
also employed between the input and output of this LSTM
to facilitate gradient flow and preserve fine-grained temporal
information.

2.3. Discriminator

Given that the input to our model is derived from the STFT
time-frequency representation, it is advantageous to employ
a Multi-Scale STFT Discriminator (MSSTFTD) [6] to assess
the reconstruction quality directly in the spectral domain. A
set of window lengths [128, 256, 512, 1024, 2048] is used,
and the hop length is fixed to one-fourth of the window length.
Accordingly, we introduce adversarial training solely using
the MSSTFTD to refine the output of the teacher codec.

2.4. Loss function

The training of the teacher codec utilizes a composite loss
function within a GAN framework. The total generator loss,
Lgenerator, 1s a weighted sum of multiple components: the
multi-scale mel-spectrogram reconstruction loss L, [7], the
generator adversarial loss L, the feature matching loss L fcq;
applied to the discriminator’s features, the codebook loss
L¢ode, and the commitment loss L. It is formulated as:

Lrec: ||M (x)_M(‘i‘)”l (1)

Ly =1 - D()|3 )

Lfeat =2 ||D'(z) — D'(#)]], 3)
l
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Lgenerator :)\rechec + )\ng + )\featheat
+ Acote ||sglze] — ex3 +Ac 12 — sglex]ll; @)

Lecode Lc

In the above equations, x and & denote the target and recon-
structed speech, respectively, M(-) is the mel-spectrogram
transform, D(-) is the discriminator output, D'(-) represents
the feature map of the [-th discriminator layer, z. is the quan-
tizer output, and ey, is the codebook vector. The multi-scale
mel-spectrogram loss Ly is computed using window length
samples [32, 64, 128, 256, 512, 1024, 2048], with the hop
length fixed at 1/4 of each window length. Each scale uses
different mel bins of [5, 10, 20, 40, 80, 160, 320]. Loss
weights are set as: Aec = 15, Ay = 2, Aeat = 1, Acode = 1,
Ac = 0.25. The discriminator is trained separately with the
adversarial loss L.

Lq=|1-D(2)|5 + |D(@)]3 (5)

For knowledge distillation in the student encoder, the loss
combines the MSE and cosine distance between the teacher
and student embeddings, weighted by 1.0 and 0.1, respec-
tively.

3. EXPERIMENTAL SETUP

3.1. Training data preparation

We trained our model on a large-scale speech dataset curated
from high-quality speech samples obtained from the EARS,
VCTK, Common Voice, LibriTTS, Multilingual LibriSpeech
datasets, and DNS Challenge 5 dataset. All speech signals
are resampled to 24 kHz. To extend the noise suppression
and dereverberation capabilities of the model, we further con-
structed a noise data set that includes noise from the VCTK,
WHAM, FSD50K, and FMA datasets, encompassing various
noise types. During training, each speech sample is combined
with background noise with an 80% probability, where signal-
to-noise ratios (SNRs) are uniformly distributed between -5
dB and 30 dB. For reverberation, we use room impulse re-
sponses (RIRs) from the Motus dataset, and each sample is
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Table 1. Objective Performance Comparison on the Open Test Set

Bitrate Model Condition ScoreQ-ref UTMOS Sheet-SSQA PESQ Audiobox AE-CE
Clean 0.43 2.97 3.55 2.13 5.25
Baseline Noisy 0.75 2.56 2.92 1.73 4.6
Reverb 0.92 1.79 2.67 1.29 4.25
6 kbps
Clean 0.15 3.74 4.26 3.22 5.69
Proposed Noisy 0.40 3.36 3.73 2.23 5.29
Reverb 0.48 3.08 3.51 1.80 5.27
Clean 1.01 1.37 2.07 1.21 3.96
Baseline Noisy 1.15 1.35 1.95 1.18 3.7
Reverb 1.12 1.32 2.43 1.15 3.55
1 kbps
Clean 0.38 3.26 3.60 1.94 5.37
Proposed Noisy 0.53 3.00 3.30 1.61 5.14
Reverb 0.62 2.74 3.06 1.43 5.01

augmented with reverberation with a probability of 50% dur-
ing training. All training data follow the cleaning and prepro-
cessing procedures defined in the baselin

3.2. Implementation Details

Notably, our approach avoids using any pre-trained models
throughout the training and inference pipeline. The training
procedure consists of two distinct stages. The first stage in-
volves training the teacher codec using a GAN-based recon-
struction objective. This model is trained for 1000 epochs
with a batch size of 128, using the AdamW optimizer with
a cosine annealing learning rate scheduler. In the subsequent
distillation stage, the student encoder is trained to replicate the
teacher’s embeddings. This stage runs for 500 epochs with a
batch size of 384, optimized by RAdam with an exponential
decay scheduler.

3.3. Computational complexity

The teacher codec operates with 1.11G multiply—accumulate
operations per second (MACs) computational complexity
(with the decoder accounting for 281.57M MACs) and con-
tains 11.07M parameters. By integrating the student encoder
(979.18M MACs), the complete system achieves a complex-
ity of 1.28G MACs with 12.65M parameters. The system
maintains strict causality without look-ahead. Consequently,
the algorithmic latency is determined solely by the 30-ms
STFT analysis window at a 24 kHz sampling rate. The sys-
tem supports variable bitrates via its RVQ module, where
each quantizer layer provides approximately 1 kbps (using a
1024-codebook at 100 fps), allowing operational modes of 1
kbps (1-layer) and 6 kbps (6-layers).

3.4. Checkpoint selection strategy

We employ a systematic strategy for selecting the final model
checkpoint. The validation objective metrics are evaluated at
regular intervals during training. Should a consistent and pro-
nounced degradation in these metrics be observed, the early

Inttps://github.com/cisco-open/lrac_data_
generation
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stopping strategy is triggered, and the checkpoint with the
best performance up to that point is selected. Otherwise, the
model checkpoint achieving the lowest training loss at the end
of the training process was chosen as the final model.

4. EVALUATION RESULTS

The proposed approach is evaluated using the official chal-
lenge metrics and compared against the official baseline sys-
tem [8]. As shown in Table [T} the KD-Vocodec framework
demonstrates consistent performance improvements at both
operational bitrates of 1 kbps and 6 kbps. The evaluation em-
ploys five objective metrics—ScoreQ_ref [9)], UTMOS [10],
Sheet-SSQA [[L1]], PESQ [12], and Audiobox Aesthetics_CE
[L3]]—selected for their high correlation with subjective qual-
ity assessments, as confirmed by Pearson correlation analysis,
thereby providing a reliable measure of decompressed speech
quality.

5. CONCLUSION

This paper introduces KD-Vocodec, our submission to Track
2 of the 2025 Low-Resource Audio Codec (LRAC) Chal-
lenge. Experimental evaluations demonstrate that KD-
Vocodec delivers superior performance over the baseline
under diverse acoustic conditions. The system provides an
effective solution for real-world speech coding applications
that require efficient processing on resource-constrained de-
vices.
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ABSTRACT

The Low-Resource Audio Codec (LRAC) Challenge aims
to advance neural audio coding for deployment in resource-
constrained environments. The first edition focuses on low-
resource neural speech codecs that must operate reliably
under everyday noise and reverberation, while satisfying
strict constraints on computational complexity, latency, and
bitrate. Track 1 targets transparency codecs, which aim to
preserve the perceptual transparency of input speech under
mild noise and reverberation. Track 2 addresses enhancement
codecs, which combine coding and compression with de-
noising and dereverberation. This paper presents the official
baseline systems for both tracks in the 2025 LRAC Chal-
lenge. The baselines are convolutional neural codec models
with Residual Vector Quantization, trained end-to-end using a
combination of adversarial and reconstruction objectives. We
detail the data filtering and augmentation strategies, model
architectures, optimization procedures, and checkpoint selec-
tion criteria.

Index Terms— LRAC 2025, baseline, transparency
codecs, enhancement codecs, residual vector quantizer, gen-
erative adversarial networks

1. INTRODUCTION

This paper presents the design and training of the baseline
models for the two tracks of the 2025 LRAC Challengeﬂ The
challenge imposes strict constraints on latency, computational
complexity, and transmission bandwidth. All participating
codec systems must operate at a 24 kHz sampling rate and
support both an ultra-low bitrate mode (up to 1 kbps) and
a low-bitrate mode (up to 6 kbps) within a single system.
Track 1, the transparency codec track, permits up to 30 ms
of latency, including buffering but excluding processing la-
tency. Track 2, the enhancement codec track, allows up to
50 ms of latency. The computational complexity limits are
700 MFLOPS for Track 1 (with no more than 300 MFLOPS
on the receive side) and 2600 MFLOPS for Track 2 (with no
more than 600 MFLOPS on the receive side).

The baseline systems are designed to demonstrate codec
implementations that meet the challenge constraints, provide
a benchmark for participants, and facilitate entry into the

https://lrac.short.gy/2025-1rac-challenge

2025 LRAC Challenge - System Description Report

competition. They are made available through two separate
public repositories.

The LRAC data generation repository [[L] contains scripts
to download public datasets, apply preprocessing (such
as sampling rate conversion), and curate data using pre-
generated file lists. It also handles splitting the data into
training, validation, and open test sets to use during the de-
velopment phase. The actual test phase relies on a blind test
set, which will be released at the end of the development
phase.

The LRAC baseline development repository [2] is a
public fork of the End-to-End Speech Processing (ESPnet)
toolkit [3]. It enhances the existing GAN-based neural speech
codec training recipes, providing greater flexibility in model
and loss function design, and improves the vector quan-
tization implementation. The repository includes designs
and configurations for models, loss functions, data loaders,
and optimizers. The trained baseline model weights are
also provided in the repository under a Creative Commons
Attribution-NonCommercial license.

It should be noted that these baseline neural codecs were
developed exclusively for the 2025 LRAC Challenge and are
not intended for, nor deployed in, any commercial products.

2. DATASETS AND AUGMENTATIONS

To ensure fair comparison across submissions and to facili-
tate analysis of factors influencing system performance, the
LRAC Challenge is conducted on a closed set of publicly
available training data for both speech and noise. Publicly
available room impulse responses (RIRs) are included in
the training data; however, participants may additionally use
other RIRs, either recorded or synthetically generated.

For the baseline systems, data preparation involves filter-
ing a curated subset of the original speech files provided by
Collaboration Al, Cisco Systems. File selection is guided by
estimated quality metrics for signal-to-noise ratio (SNR), re-
verberation, and effective speech bandwidth. To promote di-
versity and balance, we further stratify the dataset according
to speaker gender, speaker identity, and per-speaker record-
ing durations, using ground-truth annotations when available
or estimated values otherwise. Files reserved for the open test
set are excluded from training, ensuring no speaker overlap
between training and evaluation data. The baseline data gen-
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Table 1. Training speech data curation by dataset.

Dataset Kept (h)  Original (h) Retention
LibriTTS 46.3 191.3 24.20%
VCTK 22.3 78.8 28.30%
EARS 86.8 86.8 100.00%
Librivox (DNS5) 85.3 313.9 27.17%
MLS (FR, DE, ES) 275.6 450.0 61.24%
GLOBE 186.4 520.9 35.78%
Total 702.7 1641.7 42.80%

eration recipe further sets aside part of the data as validation
dataset to be used in hyperparameter tuning and checkpoint
selection. Table [T] summarizes the speech datasets and their
total durations before and after curation.

The baseline data preparation pipeline also filters noise
files based on the curated selection provided by Collabora-
tion Al, Cisco Systems. This curation ensures a diverse and
balanced noise dataset spanning major noise categories. To
achieve this, we classify all noise files using an ontology de-
rived from AudioSet, simplified to emphasize broad noise
types and human vocal sounds. Noise classification is per-
formed with CLAP [4], and files from the most frequent cate-
gories are downsampled to balance the distribution. A subset
of the noise data is reserved for constructing the open test
set used during development, while additional portions of the
training noise and reverberation data are held out to form a
validation set for hyperparameter tuning and checkpoint se-
lection. Figure[2]illustrates the final distribution of noise data
used for training the baseline models.

For the Track 1 baseline model, no data augmentation
is applied; the model is trained exclusively on the curated
speech data. Training inputs are extracted as sliding win-
dows of 62,400 samples per utterance with 50% overlap. In
contrast, the Track 2 baseline employs on-the-fly data aug-
mentation using the EnhPreprocessor class from the ESPnet
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framework. Reverberation is applied with a probability of 0.5,
and additive noise with a probability of 0.8, with signal-to-
noise ratios (SNRs) uniformly sampled between -5 and 30 dB.
Since EnhPreprocessor supports only a single noise source
per utterance, we adopt that constraint. For reverberation, we
exclusively use real room impulse responses (RIRs) from the
public datasets provided in the LRAC Challenge and do not
include synthetically generated RIRs. When reverberation is
added to an input utterance, the early reflection component
of the room impulse response is also applied to the reference
speech. The early reflections are defined as the 50 ms segment
following the direct path.

3. MODEL ARCHITECTURES

The ESPnet repository includes implementations of several
neural audio codecs, including Soundstream [5] and En-
codec [6], from which we derive our baseline systems for
the LRAC Challenge. These codecs follow a convolutional
encoder-decoder architecture with a quantizer in the middle.
Both Soundstream and Encodec employ a Residual Vector
Quantizer (RVQ) to compress encoder embeddings. Our
baseline systems adopt this design and they are trained with a
generative adversarial network (GAN) approach.

3.1. Track 1 Baseline Model

The Track 1 baseline model employs an encoder operating
directly on the raw audio waveform. It begins with a convolu-
tional input layer (kernel size 7, 8 output channels), followed
by four convolutional blocks. Each block consists of three
residual convolutional sub-blocks and a strided convolution
for temporal downsampling. The block strides are 3, 4, 4, and
5, yielding an overall stride of 240 samples (10 ms). Within
each residual sub-block, two dilated convolutions with ELU
nonlinearities are wrapped by skip connections, enabling a
larger receptive field. All convolutional layers use weight
normalization. The embedding dimension increases progres-
sively to 16, 32, 64, and finally 160 after each strided convo-
Iution. To minimize computational cost, the encoder omits a
dedicated output layer. The third block includes two center-
aligned convolutions, introducing 10 ms latency; combined
with encoder buffering, this results in 20 ms total transmit-
side latency. The encoder receptive field spans 14,085 sam-
ples.

RVQ is applied with 6 layers, each containing 1,024 code-
words, contributing 10 bits per frame. With an encoder frame
rate of 100 Hz, this corresponds to 1 kbps per layer, or 6 kbps
in total. Each RVQ layer uses projection layers to reduce the
160-dimensional encoder output to 12 dimensions, and then
project the selected codeword back to 160 dimensions, with
residuals computed in the original space. The RVQ complex-
ity is 19.35 MFLOPS. Post-training, the output projections
can be absorbed into the codebooks, storing separate transmit-

47



Table 2. Latency and computational complexity of the  Table 3. Latency and computational complexity of the
Track 1 baseline system. Track 2 baseline system.
Transmit Side ~ Receive Side  Overall Transmit Side  Receive Side  Overall
Encoder RVQ Decoder Encoder RVQ Decoder
Buffering Latency (ms) 10 0 0 10 Buffering Latency (ms) 10 0 0 10
Algorithmic Latency (ms) 10 0 10 20 Algorithmic Latency (ms) 20 0 20 40
Compute Complexity (MFLOPS) 377.5 17.05 296.8 691.35 Compute Complexity (MFLOPS)  1944.2  38.7 563.3 2546.2

and receive-side versions, which reduces complexity to 17.05
MFLOPS at the cost of increased binary size.

The decoder is a convolutional network consisting of four
blocks and a final output layer. Each block begins with a
transposed convolution for upsampling, followed by three
residual sub-blocks. The strides of the transposed convolu-
tions are 5, 4, 3, and 4, yielding an overall stride of 240.
The kernel sizes are set equal to the strides, preventing im-
plicit overlap-add in the transposed convolutions that could
otherwise introduce additional latency. As in the encoder,
each residual sub-block contains two dilated convolutions
with ELU nonlinearities, wrapped by skip connections. The
final output layer is a convolution with kernel size 21 and
a tanh activation, producing waveform samples in the range
[-1, 1]. All convolutional layers use weight normalization.
The decoder introduces 10 ms algorithmic latency due to the
center-aligned convolution in the first block, and its over-
all computational complexity is 296.8 MFLOPS (excluding
nonlinearities).

We provide a summary of the latency and computational
complexity of the Track 1 Baseline system in Table[2] We also
provide a detailed design sheet for both Track 1 and Track
2 baseline models with all the hyperparameters, latency and
computational complexity calculations in [7]. For a guide-
line on buffering and algorithmic latency calculations, see the
guidance on the challenge website [8]].

3.2. Track 2 Baseline Model

The Track 2 baseline model follows the same architectural
principles as Track 1 but is trained as a joint codec and en-
hancement network. It takes noisy and reverberant audio as
input and aims to reconstruct the clean reference signal. For
reverberant inputs, the clean reference retains the early rever-
beration components.

The encoder starts with a convolutional input layer (ker-
nel size 7, 8 output channels), followed by five convolutional
blocks. Each block contains multiple residual convolutional
sub-blocks and a strided convolution for temporal downsam-
pling. The first two blocks include 4 residual sub-blocks each,
while the last three contain 3 sub-blocks. The block strides are
2,2,3,4, and 5, resulting in an overall stride of 240 samples
(10 ms). Within each residual sub-block, two dilated convolu-
tions with ELU activations are wrapped by skip connections.
The embedding dimension increases progressively to 16, 32,
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64, 128, and 320 after each strided convolution. The encoder
exhibits a buffering latency of 10 ms, an algorithmic latency
of 20 ms due to center-aligned convolutions, and a total com-
putational complexity of 1944.2 MFLOPS.

Similar to the Track 1 system, we employ a 6-layer RVQ,
with each layer containing 1,024 codewords, contributing 10
bits per frame. Each layer first projects the 320-dimensional
encoder output to a 24-dimensional space, selects a codeword,
and then projects it back to 320 dimensions, with residuals
computed in the original space. The RVQ has a computa-
tional complexity of 48 MFLOPS. By absorbing the output
projections into the codebooks after training, the complexity
can be reduced to 38.7 MFLOPS at the expense of increased
binary size.

The Track 2 decoder is a convolutional network composed
of five blocks followed by a final output layer. Each block
starts with a transposed convolution for upsampling, followed
by three residual sub-blocks. The strides of the transposed
convolutions are 5, 4, 3, 2, and 2, resulting in an overall stride
of 240. Kernel sizes match the strides, as in the Track 1 de-
coder. The embedding dimension decreases progressively to
96, 48, 24, 12, and 8 after each transposed convolution. The
final output layer is a convolution with a kernel size of 21, a
single output channel, and a tanh activation, producing wave-
form samples in the range [-1, 1]. The decoder introduces
20 ms of algorithmic latency due to two center-aligned con-
volutions in the first block and has an overall computational
complexity of 563.3 MFLOPS (excluding nonlinearities).

We provide a summary of the latency and computational
complexity of the Track 2 Baseline system in Table [3] For
a detailed description of the hyperparameters, as well as the
latency and computational complexity calculations for both
Track 1 and Track 2 baseline models, please refer to the de-
sign sheet [[7].

4. TRAINING

We train both systems end-to-end using a combination of ad-
versarial and reconstruction losses. The RVQ codebooks are
updated with exponential moving averages, while the pro-
jection matrices are optimized via backpropagation. For the
codebooks, straight-through gradient estimation is applied.
We use Euclidean distance in codeword selection. To sta-
bilize training and prevent rapid fluctuations in the encoder
embeddings and codeword selections, we include a commit-

48



Table 4. Objective evaluation results for Track 1 baseline under clean, noisy, and reverberant conditions.

Bitrate Clean ‘ Noisy ‘ Reverberant

sheet_ssqa scoreq_ref audiobox_AE_CE utmos pesq ‘ sheet_ssqa scoreq_ref audiobox_AE_CE utmos pesq ‘ sheet_ssqa scoreq_ref audiobox_AE_CE utmos pesq
1 kbps 1.84 1.15 3.90 144 115 1.72 1.29 3.40 133 1.11 1.85 1.36 2.94 126 1.07
6 kbps 3.84 0.35 5.28 323 2.67 3.12 0.82 4.37 2.70 1.81 222 1.13 343 1.32 1.18

Table 5. Objective evaluation results for Track 2 baseline under clean, noisy, and reverberant conditions.

Bitrate Clean ‘ Noisy ‘ Reverberant

sheet_ssqa  scoreq_ref audiobox_AE_CE utmos pesq \ sheet_ssqa  scoreq_ref audiobox_AE_CE utmos pesq \ sheet_ssqa  scoreq_ref audiobox_AE_CE utmos pesq
1 kbps 2.07 1.01 3.96 1.37 1.21 1.95 1.15 3.70 1.35 1.18 243 1.12 3.55 1.32 1.15
6 kbps 3.55 0.43 5.25 297 213 2.92 0.75 4.6 256 1.73 2.67 0.92 4.25 1.79 129

ment loss [9]. During training, we uniformly sample between
1 kbps and 6 kbps using random quantizer dropout, enabling
the decoder to operate robustly at both bitrates.

For reconstruction, we employ a multi-scale mel spectro-
gram loss [10] with window lengths of 64, 128, 256, 512,
1024, and 2048 samples, and corresponding mel bin counts
of 10, 20, 40, 80, 160, and 320, respectively.

The adversarial objective follows Encodec [6], using
multi-scale feature discriminators operating in the complex
STFT domain. We compute STFTs with window lengths of
128, 256, 512, 1024, and 2048 samples, with hop sizes equal
to one quarter of the window length. Each discriminator is a
convolutional network with weight normalization and Leaky
ReLU activations (slope 0.1), using 16 channels in its internal
layers. Hinge loss is applied at the output layer. In addi-
tion, we apply a feature matching loss on the intermediate
discriminator representations.

The loss weights are set to 10 for the commitment loss, 5
for the multi-scale mel-spectrogram loss, 1 for the adversarial
loss, and 2 for the feature matching loss.

Each training epoch consists of 10,000 randomly selected
utterances from the training set. From these utterances, slid-
ing windows of 62,400 samples are extracted with 50% over-
lap. Training within an epoch continues until all windows
are consumed, so the number of iterations per epoch is not
fixed but remains approximately constant. We reserve 1,000
utterances for validation. For Track 2, on-the-fly noise and
reverberation augmentation is applied during validation. Al-
though offline augmentation of the validation set could help
reduce variance in the validation losses, we did not adopt this
approach for simplicity.

We train with a batch size of 64 per GPU, using distributed
data parallelism with 6 GPUs for Track 1 and 8 GPUs for
Track 2. The learning rate is initialized at 3e-4 and decays
at each step by a factor of 0.998. Optimization is performed
with RAdam, using betas of 0.9 and 0.999. The Track 1 model
is trained for 1,150 epochs and the Track 2 model for 1,325
epochs. For model selection, we use the checkpoint with the
lowest multi-scale mel-spectrogram loss on the validation set.
While this choice prioritizes ease of implementation, more
robust strategies—such as combining objective metrics that
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correlate better with subjective listening tests—are likely to
yield improved results.

We present the baseline results for Track 1 and Track
2 on the open test set in Table [4] and Table [5] respectively.
The reported metrics are the official objective measures of
the LRAC challenge: SHEET_SSQA, SCOREQ_Ref, Au-
diobox_AE_CE, UTMOS, and PESQ. Further details on the
open test set and these evaluation metrics are available on the
2025 LRAC Challenge objective evaluation page [11].

5. ACKNOWLEDGEMENTS

We thank the Data Team at Cisco Collaboration Al for their
support in curating and augmenting the training datasets used
in the baseline development. In particular, we acknowledge
the contributions of Ivana Balic, Laura Lechler, Daniel Aris-
mendi, Ayoub Zaidour, and James Taylor.

6. REFERENCES

[1] Collaboration Al, Cisco Systems. 2025 LRAC Chal-
lenge data generation repository, 2025. Available:
https://github.com/cisco-open/lrac_
data_generation|(accessed: 2025-09-30).

[2] Collaboration AI, Cisco Systems. 2025 LRAC
baseline development repository, 2025.  Available:
https://github.com/cisco-open/espnet
(accessed: 2025-09-30).

[3] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique
Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin
Chen, Adithya Renduchintala, and Tsubasa Ochiai. ES-
Pnet: End-to-end speech processing toolkit. In Proceed-
ings of Interspeech, pages 2207-2211, 2018.

[4] Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Is-
mail, and Huaming Wang. Clap learning audio con-
cepts from natural language supervision. In ICASSP
2023 - 2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 1-
5,2023.

49


https://github.com/cisco-open/lrac_data_generation
https://github.com/cisco-open/lrac_data_generation
https://github.com/cisco-open/espnet

[5] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan
Skoglund, and Marco Tagliasacchi. Soundstream: An
end-to-end neural audio codec. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 30:495—
507, 2022.

[6] Alexandre Défossez, Jade Copet, Gabriel Synnaeve,
and Yossi Adi. High fidelity neural audio compres-
sion. Tramsactions on Machine Learning Research,
2023. Featured Certification, Reproducibility Certifica-
tion.

[7] Collaboration AI, Cisco Systems. 2025 LRAC
baseline model design sheet, 2025. Avail-
able: https://github.com/cisco-open/
espnet/blob/master/egs2/lrac/
LRAC-Challenge—-Baseline-Models—-Design-Sheet.
x1sx (accessed: 2025-09-30).

[8] Collaboration AI, Cisco Systems. 2025 LRAC
challenge latency calculation guidelines, 2025.
Available: https://lrac.short.qgy/
latency—-guidelines|(accessed: 2025-09-30).

[9] Aaron van den Oord, Oriol Vinyals, and koray
kavukcuoglu. Neural discrete representation learning.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.

[10] Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim.
Parallel wavegan: A fast waveform generation model
based on generative adversarial networks with multi-
resolution spectrogram. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 6199-6203, 2020.

[11] Collaboration Al, Cisco Systems. 2025 LRAC
challenge - objective evaluation, 2025. Avail-
able: https://lrac.short.gy/evaluation#
objective—-evaluation (accessed: 2025-09-30).

2025 LRAC Challenge - System Description Report

50


https://github.com/cisco-open/espnet/blob/master/egs2/lrac/LRAC-Challenge-Baseline-Models-Design-Sheet.xlsx
https://github.com/cisco-open/espnet/blob/master/egs2/lrac/LRAC-Challenge-Baseline-Models-Design-Sheet.xlsx
https://github.com/cisco-open/espnet/blob/master/egs2/lrac/LRAC-Challenge-Baseline-Models-Design-Sheet.xlsx
https://github.com/cisco-open/espnet/blob/master/egs2/lrac/LRAC-Challenge-Baseline-Models-Design-Sheet.xlsx
https://lrac.short.gy/latency-guidelines
https://lrac.short.gy/latency-guidelines
https://lrac.short.gy/evaluation#objective-evaluation
https://lrac.short.gy/evaluation#objective-evaluation

	2025_lrac_challenge_technical_report_track1_aitd_go
	2025_lrac_challenge_technical_report_track1_and_track2_pdura7
	2025_lrac_challenge_technical_report_track1_and_track2_teamwzqaq
	2025_lrac_challenge_technical_report_track1_boya_audio
	 Introduction
	 MODEL STRUCTURE
	 Encoder Block
	 Decoder Block
	 Quantizer
	 Computational Complexity
	 System Latency

	 TRAINING
	 Data Processing 
	 Loss Setups
	 Network Training Configurations

	 References

	2025_lrac_challenge_technical_report_track1_nano_codec
	 Introduction
	 Method Illustrations
	 Overall Architecture
	 Large Kernel Convolution-Style Attention Block

	 Miscellaneous Configurations
	 Loss Setups
	 Dataset Setups
	 Network Setups
	 Training Setups

	 References

	2025_lrac_challenge_technical_report_track1_nju-aalab_and_track2_leyan
	 Introduction
	 Proposed Model
	 Architecture
	 Loss Functions
	 Two Training Stages

	 Experimental And Results
	 Training Data Preparation
	 Implementation Details
	 Results

	 conclusion
	 References

	2025_lrac_challenge_technical_report_track2_atid_go
	2025_lrac_challenge_technical_report_track2_boya_audio
	2025_lrac_challenge_technical_report_track2_nano_codec
	 Introduction
	 METHOD ILLUSTRATIONS
	 Overall Architecture
	 Multi-stage Training Scheme
	 Stage 1: Training codebook of clean speech
	 Stage 2: Training a speech-enhancement encoder
	 Stage 3: Training a low complexity decoder


	 MISCELLANEOUS CONFIGURATIONS
	 Network Setups
	 Loss Setups
	 Dataset Setups
	 Evaluation Metrics
	 Training Settings

	 References

	2025_lrac_challenge_technical_report_track2_nju-aalab
	 Introduction
	 Proposed Method
	 Codec architecture
	 PR training strategy
	 Loss function

	 EXPERIMENTAL SETUP
	 Training data preparation
	 Implementation Details
	 Computational complexity and latency

	 Results
	 CONCLUSION
	 References

	2025_lrac_challenge_technical_report_track2_parslog
	 Introduction
	 Method
	 Model Architecture
	 Stage-wise Training

	 Experiment
	 Datasets
	 Training and Evaluation Settings
	 Speech Quality Metrics
	 Model Efficiency

	 Conclusions
	 References

	2025_lrac_challenge_technical_report_track2_xuyang
	 Introduction
	 PROPOSED METHOD
	 Teacher codec architecture
	 Student encoder
	 Discriminator
	 Loss function

	 EXPERIMENTAL SETUP
	 Training data preparation
	 Implementation Details
	 Computational complexity
	 Checkpoint selection strategy

	 EVALUATION RESULTS
	 CONCLUSION
	 References

	2025_lrac_challenge_technical_sys_report_track1_and_track2_baselines
	 Introduction
	 DATASETS AND AUGMENTATIONS
	 MODEL ARCHITECTURES
	 Track 1 Baseline Model
	 Track 2 Baseline Model

	 TRAINING
	 ACKNOWLEDGEMENTS
	 References


