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ABSTRACT

We propose a frequency—time domain fusion audio codec for
the 2025 Low-Resource Audio Coding (LRAC) Challenge,
designed to meet strict constraints on complexity, latency, and
bitrate while ensuring high quality and robustness. The sys-
tem achieves 698 M FLOPs, 1.48 M parameters, and sub-30
ms latency, combining a frequency-domain encoder, Resid-
ual Vector Quantization (RVQ), and a time-domain decoder.
Multi-Period and Multi-Resolution GANS jointly refine tem-
poral and spectral fidelity. A multi-stage training process
combines spectral reconstruction with adversarial objectives
and noise-reduction strategies to ensure stable optimization
and high-quality output. Evaluations at 1 kbps and 6 kbps
in clean, noisy, and reverberant settings show consistent and
significant gains over the baseline.

Index Terms— speech codec, frequency—time domain fu-
sion, low resource

1. INTRODUCTION

Speech interfaces have become essential in embedded sys-
tems, mobile devices, and other platforms with limited com-
putational power or energy budgets. In such low-resource
environments, speech codecs must deliver real-time process-
ing while balancing complexity, bitrate, and latency, and still
preserve high audio quality under noise and reverberation.
While end-to-end neural audio coding has improved qual-
ity and compression efficiency, simultaneously achieving low
complexity, low latency, low bitrate, and robustness in real
acoustic conditions remains a major challenge.

The 2025 Low-Resource Audio Coding (LRAC) Chal-
lenge provides a stringent benchmark for this problem, with
strict limits on complexity, latency, and bitrate, and a require-
ment for real-world operation. It serves both as a test of en-
gineering capability and a driver for advances in integrated
low-resource speech coding.

To address these demands, we propose a frequency—time
domain fusion end-to-end audio codec for high-fidelity
speech reconstruction under extreme resource constraints.
The system combines frequency-domain encoding and time-
domain decoding, augmented by a multi-stage training pro-
cess, and noise-reduction techniques. These components
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jointly enhance transmission quality and fine-detail reproduc-
tion within tight computational and storage budgets, meeting
LRAC’s requirements for low latency, low bitrate, and high
intelligibility, and delivering superior performance across
diverse evaluation scenarios.

2. METHOD

2.1. Architecture

We propose a frequency—time domain fusion end-to-end au-
dio codec that achieves high-quality speech transmission
under strict resource constraints. The overall architecture, il-
lustrated in Fig. 1, consists of a frequency-domain encoder, a
residual vector quantizer (RVQ) [1, 2], and a time-domain de-
coder. The input audio is first transformed into an amplitude
spectrogram via short-time Fourier transform (STFT). The
frequency-domain encoder, built upon SpecTokenizer [3],
employs a complex convolution layer followed by four cas-
caded FdownBlocks and RNNBIlocks to extract and compress
spectral features. Each FdownBlock combines a 2D convolu-
tion with Snake2D activation to enhance harmonic structure
modeling, while each RNNBlock integrates FLNorm, Tanh,
GRU, 2D convolution, and Snake2D activation, with residual
connections to maintain stable gradient flow and preserve
feature fidelity.

The latent representation is subsequently quantized by the
RVQ module and passed to a BigCodec-based time-domain
decoder [4]. This decoder comprises a 1D convolution, a
unidirectional LSTM with residual connections, four sequen-
tial DecoderBlocks, SnakelD activation, an output 1D con-
volution, and Tanh activation. Each DecoderBlock contains
Snake1D activation [5], a 1D transposed convolution for up-
sampling, and several ResidualBlocks. Each ResidualBlock
consists of two 1D convolutions with different kernel sizes
and SnakelD activations, coupled with a residual connection
at the end, thereby improving high-frequency detail restora-
tion and spatial perceptual quality in waveform reconstruc-
tion.

Model training adopts a multi-objective loss function,
including multi-scale mel-spectrogram loss, VQ quantization
loss, and GAN-based adversarial loss. During adversarial
training, a Multi-Period Discriminator (MPD) and Multi-
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Fig. 1. The proposed model architecture.

Resolution Discriminator (MRD) [6] are employed jointly
to constrain both time-domain details and spectral textures,
significantly enhancing mid-to-high frequency energy repro-
duction and naturalness. As a result, the proposed system
delivers high-fidelity speech reconstruction that combines
audio quality and intelligibility under low-latency and low-
bitrate conditions.

2.2. Training Stages

We first trained the codec without noise-reduction to obtain
a performance-stable baseline model, and then introduced a
noise-reduction stage after convergence. Although the com-
petition rules explicitly state that noise-reduction features nei-
ther yield additional credit nor incur penalties in evaluation,
our experiments show that incorporating this stage signifi-
cantly improves speech quality in real acoustic environments.
Consequently, we consider noise-reduction training an essen-
tial component of system optimization.

The codec training process consists of two parts: a Mel
stage and a GAN stage. In the Mel stage, only the multi-scale
mel-spectrogram loss is used for optimization. The model
converges rapidly in this stage and achieves excellent recon-
struction in the low-frequency range (0-1.5 kHz), with cor-
respondingly high objective scores. However, because the
mel loss provides insufficient constraint in the mid-to-high
frequency range, the generated audio above 1.5 kHz often ex-
hibits blurred spectral detail, energy attenuation, and slight
mechanical artifacts, affecting subjective naturalness. To ad-
dress this issue, we switch to the GAN stage after Mel-stage
convergence, leveraging both the Multi-Period Discriminator
(MPD) and Multi-Resolution Discriminator (MRD) for ad-
versarial training. This significantly enhances mid-to-high
frequency detail restoration, produces spectral energy distri-
butions closer to natural speech, and effectively reduces me-
chanical noise. While some objective metrics (e.g., PESQ
and Scoreq) degrade slightly in this stage, subjective ratings
improve markedly, with richer spatial perception and more
natural fine detail.

During training, we observed an interesting phenomenon:
after several cycles in the GAN stage, returning to the Mel
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stage for further optimization causes objective scores not only
to recover but to exceed the best results of the initial Mel
stage. This may be because the GAN stage encourages the
generator to explore a broader solution space, providing the
mel loss with a better optimization starting point and helping
the model escape local minima.

In the noise-reduction training stage, the input data com-
prise a random mix of clean, noisy, and reverberant speech,
with the target output being the corresponding clean speech.
The loss functions and hyperparameters are kept identical
to those in codec training, and adversarial learning is again
applied to further improve the realism and richness of gener-
ated audio. The discriminator configuration follows a staged
policy: MPD alone in the early phase to strengthen time-
domain periodicity discrimination; MPD plus MRD in the
mid phase to impose multi-resolution spectral constraints;
and MRD alone in the late phase to focus optimization on
spectral detail restoration. Subjective listening tests indi-
cate that this configuration yields the best improvements in
mid-to-high frequency clarity, spectral extension, and overall
intelligibility, producing speech more closely resembling real
recordings.

3. EXPERIMENTS

3.1. Datasets

All training data in this study are sourced from the official
LRAC2025 dataset and underwent rigorous filtering and pre-
processing prior to use. For noise data, labels were predicted
using a pre-trained audio understanding model, and any non-
pure noise samples containing speech were removed to ensure
clean noise content. For reverberation data, room impulse re-
sponses (RIRs) were truncated before convolution, retaining
only the 1 ms segment following the peak. This reduces long-
tail decay that can impair speech clarity while preserving spa-
tial characteristics.

Based on this, we applied a data augmentation strategy by
mixing clean, noisy, and reverberant speech in a 1:1:1 ratio. In
noise mixing, the signal-to-noise ratio (SNR) was uniformly
sampled within the range of 10-30 dB to increase acoustic
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Table 1. Evaluation results for different bitrates and acoustic conditions.

Clean Noisy Reverb
Bitrate Method sheet scoreq audiobox utmos  pes sheet scoreq audiobox utmos  pes sheet scoreq audiobox utmos  pes
ssqa ref AE_CE S pesd ssqa ref AE_CE pesq ssqa ref AE_CE pesq
Ikb Baseline | 1.84 1.15 3.90 1.44 1.15] 1.72 1.29 3.40 1.33 1.11] 1.85 1.36 2.94 1.26 1.07
Ps
Proposed | 3.79 0.35 5.31 342 2.09 | 3.65 0.38 5.18 332 1921 2.80 0.59 4.53 2.58 1.46
6Kkb Baseline | 3.84 0.35 5.28 323 2.67|3.12 0.82 4.37 270  1.81|2.22 1.13 343 .32 1.18
ps
Proposed | 4.17 0.18 5.62 377 298| 3.99 0.30 545 364 250 3.14 0.53 4.5 274 1.62
Table 2. Latency breakdown of the proposed system.
Source Samples Notes
STFT hopsize 192 @ 16kHz Frame shift
Decoder Residual Units 272 @ 16kHz 64x3+16x4+4x4+1x5
Final decoder convolution 3 @ 16kHz Kernel size =7
Resampling delay 8 @ 24kHz Maximum group delay of the IIR filter
Total (24kHz) 716 @ 24kHz (29.83 ms) 472 x g +8
diversity. ms overall.

Model evaluation was conducted on an open test set from
the same source, with inference performed directly on the
original official data without additional processing, and per-
formance tested at both 1 kbps and 6 kbps bitrates.

3.2. Implementation Details

The proposed model has an overall computational complex-
ity of 698 M FLOPs and 1.48 M parameters, with the encoder
and RVQ module accounting for 399 M FLOPs and 1.17 M
parameters, and the decoder for 299 M FLOPs and 0.32 M pa-
rameters. The system operates at a sampling rate of 24 kHz,
with a frame length of 720 samples and a frame shift of 288
samples (approximately 83 Hz frame rate). In the STFT com-
putation, only frequency bins 0-240 (0-8kHz) are used, ef-
fectively yielding a 24kHz to 16 kHz downsampling without
introducing additional latency.

The encoder employs convolution kernels and strides of
1, introducing no additional latency. The decoder primarily
uses causal convolutions and causal transposed convolutions,
but non-causal convolutions are applied in specific positions
to enhance reconstruction quality: the first convolution layer
in the decoder (kernel = 1, stride = 1), the first convolution
layer within repeated ResidualBlocks (kernel sizes = [7, 9, 9,
11], stride = 1), and the final convolution layer in the decoder
(kernel = 7, stride = 1). These designs significantly improve
mid-to-high frequency detail within the latency budget. The
end-to-end latency is determined by both the STFT window
length and the non-causal convolutions, and is kept within 30
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To convert the 16 kHz audio output of the decoder to
24 kHz without noticeably increasing latency, we use a
fractional-rate resampling strategy. First, the signal is up-
sampled by a factor of three using zero-insertion. Next, the
spectral images introduced by zero-insertion are removed
with an 11th-order IIR Butterworth low-pass filter with an 8
kHz cutoff frequency. Finally, the signal is downsampled by
a factor of two to reach the target sampling rate. Compared
to an FIR-based approach, this IIR design exhibits a maxi-
mum passband group delay of only 8 samples near 8 kHz,
making it well-suited for real-time applications. The latency
breakdown is shown in Table 2.

The RVQ module consists of six codebooks, each con-
taining 4096 entries (indexed with 12-bit codes) and a vector
dimension of 8. During inference, either 1 codebook (for 1
kbps) or all 6 codebooks (for 6 kbps) can be selected, enabling
operation at two different bitrates. The encoder channel con-
figuration is [32, 32, 32, 128, 335], with time-axis kernel sizes
and strides of [1, 1, 1, 1] and frequency-axis kernel sizes and
strides of [5, 4, 4, 3]. The decoder channels are [117, 58, 29,
14, 7], with upsampling rates of [3, 4, 4, 4]. For the discrim-
inators, the MPD uses periods [2, 3, 5, 7, 11], and the MRD
operates with window sizes [128, 256, 512, 1024, 2048].

For optimization, both the generator and discriminators
use an initial learning rate of 8 x 10~* during the Mel stage
and 1 x 10™* during the GAN stage, gradually reduced to
1 x 10~°. Adam is used throughout all training stages.

Checkpoint Selection Strategy: For system submission, we
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performed subjective listening evaluations on multiple mod-
els from different training stages using the open test set, se-
lecting the checkpoint that yielded the best combination of
audio quality and fine-detail reproduction as the final compe-
tition version.

3.3. Results

Our evaluation uses Versa [7], the official toolkit recom-
mended by the 2025 LRAC Challenge, which provides
standardized implementations of multiple metrics, includ-
ing sheet_ssqa, scoreq_ref, audiobox AE_.CE, UTMOS, and
PESQ. Experiments are conducted under three acoustic con-
ditions: clean, noisy, and reverberant. Using the RVQ mod-
ule’s ability to achieve variable bitrate by selectively dropping
codebooks during inference, we further evaluate the model at
1 kbps and 6 kbps.

The evaluation results are summarized in Table 1. Under
all three acoustic conditions and both bitrates, the proposed
method outperforms the baseline system across all metrics.

4. CONCLUSION

We propose a frequency-time domain fusion end-to-end
codec for low-resource audio coding, combining iterative
optimization with noise-reduction to enhance quality and ro-
bustness across diverse acoustic conditions and bitrates. Ex-
ploiting the complementarity of frequency-domain encoding
and time-domain decoding, the system achieves high-fidelity
speech reconstruction within strict complexity and latency
limits. Experiments demonstrate consistent gains over the
baseline in clean, noisy, and reverberant settings, confirming
the effectiveness of the approach and its potential for more
complex scenarios.
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