
LOW RESOURCE AUDIO CODEC CHALLENGE
Sublime SYSTEM DESCRIPTION

Piotr Dura
piotrdura7@gmail.com

Abstract—This work aims to advance neural audio coding
by exploring novel approaches for Speech Vocoding and Vector
Quantization (VQ). Both Track 1 and Track 2 systems are
proposed, and both are convolutional encoder-decoder models
with discrete representation emitted by the encoder. The decoder
is a conv1d-conv2d hybrid Fourier-domain vocoder we call
Sublime. Both Tracks share the same Vocoder weights. A novel
quantization scheme, which we call Simulated Annealing Vector
Quantization (SAVQ), is proposed along with a method to prevent
codebook collapse.

Index Terms—LRAC 2025, audio coding, VQ, generative ad-
versarial networks

I. INTRODUCTION

In this work, we present the design of a participant system
for the 2025 LRAC challenge Tracks 1 and 2. Track 1 system
is comprised of the encoder (3.8M params, 399.7 MFLOPS)
and decoder (2.5M params, 294.1 MFLOPS). Track 2 system
also contains a frontend (20.6M params, 2284.6 MFLOPS).
Quantizer can operate in two modes — 1kbps and 6kbps, both
modes can be used interchangeably by the decoder. The model
is fully causal, but the buffering latency of analysis-synthesis
accounts for the full 30ms end-to-end latency budget. Track 2
reuses the decoder weights, and instead of the encoder-SAVQ
combination, a separate convolutional encoder is trained with
the objective of predicting the codes via a Cross Entropy Loss.
Track 2 encoder has an additional 20ms of algorithmic latency
which result in a 50ms end-to-end latency. The latency figures
are not estimated, but are the worst-case, measured latencies
imposed by the algorithm. Presented MFLOPS numbers are
obtained using a pytorch calflops package.

Total amount of training time spent on both Tracks is less
than 120 gpu-hours on an NVIDIA RTX 4090, out of which
96 gpu-hours were assigned for Track 1 and 24 gpu-hours for
Track 2.

II. ENCODER

The first processing stage converts the input 24kHz mono
waveform into two log-mel spectrograms (10ms hop, 20ms
window, 64 filters and 10ms hop, 30ms window, 96 filters)
and concatenates them in channel dimension. The result is
processed by a conv1d block (kernel size 3, 160 input chan-
nels, 256 hidden channels, 120 feed-forward channels), then
the frames are stacked with stride N = 2 to form a 20ms-per-
frame sequence. Causal stacking is used to not increase the
latency, so that the initial stacked frames are partial during
inference. The stacked sequence is further processed by 8
conv1d blocks (each has kernel size 3, 384 hidden channels,

Fig. 1. Conv1d and Conv2d blocks.

384 feed-forward channels) and projected into query vectors q.
Conv1d blocks are inspired by ConvNeXt [1] but use vanilla
(non-depth-separable) conv1d and include a transformer-style
feed-forward block with expansion and RMSNorm normaliza-
tion.

III. QUANTIZATION
Standard quantization schemes require finding a nearest-

neighbor embedding out of an embedding table for each
frame of the input using an L2 or cosine distance. Since
the embedding lookup is nondifferentiable, a straight-through
estimation (STE) is typically used. An optional commitment
loss can be used to penalize the distance between the input
frames and the quantized output frames. Typical implemen-
tations leverage techniques like K-means initialization, dead
code revival or smoothing of the update of an embedding
table via an EMA. To improve the efficiency of compression,

2025 LRAC Challenge – System Description Report 05



SoundStream introduces a residual VQ [4]. RVQ quantizes the
input and then iteratively quantizes the resulting quantization
error with a number of separate embedding tables. More recent
approaches such as FSQ [5] avoid using an embedding table
altogether.

The proposed SAVQ utilizes cosine Cross-Attention with
a learnable bank of embeddings and is parametrized by the
temperature T:

SAVQ(q, k, v;T ) = softmax

(√
D cosine sim(q, k)

T

)
V

where k, q ∈ RD

As the training progresses the temperature is annealed with
a fixed annealing schedule. In the early stages when the
temperature is high, attention over the embeddings has high
entropy. Over time the sharpness of the attention increases and
the behavior of the system shifts towards compression. As
temperature approaches zero, attention over the embeddings
approaches a one-hot vector. Notice, that a standard dot-
production attention would not be effective for this purpose, as
the network would be able to arbitrarily parametrize norms of
query-key pairs. Second, because the cosine metric is used the
normalization term of

√
D is moved to the numerator. To in-

crease the efficiency of compression, G groups of embeddings
have been used, which is equivalent to a multi-head attention.

To enable efficient learning of the encoder even with low
temperatures a temperature floor parameter TF is introduced.
Activations that are emitted by the quantizer are calculated
using the original T , only the gradient that flows back to the
encoder is modified as if the attention weights were calculated
using max(T, TF ).

This formulation, while empirically effective, suffered from
codebook collapse, where roughly 10-20% of all codes ended
up never being the top-1 activation. As the training progressed
and temperature was annealed these codes were never reused
by the model. A simple technique would be to employ entropy
maximization loss:

LH(p) = −H(p) =
∑
t,k

p(t, k) log p(t, k)

where p is a categorical distribution over codes in a given
codebook, t is batch-time-step, k is embedding index.

Since we don’t want to penalize low codebook entropy as
long as all codes have non-zero usage, we applied an ad-hoc
loss called reciprocally-weighted smoothed surprisal (RWSS):

RWSS(p) = −
∑
k

1

pK(k) + ϵ

∑
t∈Qq(p,k)

log p(t, k)

where pK(k) denotes empirical probability that the code k is a
top-1 activation calculated over batch examples and time steps,
ϵ is a smoothing constant, Qq is a set of batch-time-steps that
contains upper q-quantile of all p(:, k)

Intuitively, entropy maximization would penalize high log-
probabilities of ”activated” tokens and would move the at-
tention weights towards a uniform distribution. RWSS loss

penalizes low log-probabilities of tokens that are rarely acti-
vated (low pK(k)) and routes that penalty only to the frames
that already have high contribution of those codes. Version of
this loss that penalized all frames instead of the top q-quantile
resulted in a codebook in which code utilization oscillated
highly over time.

Two quantizers are trained in parallel. Quantizer A uses
G = 4 groups, each containing K = 32 embeddings at 50
frames-per-second. Quantizer B uses G = 20 groups. Ultra-
low bitrate mode is achieved by calculating both quantizer
outputs and adding the resulting embeddings. During training
the quantizer B embedding is added with a probability of 50%.

IV. VOCODER
Following recent SOTA systems (Vocos [6], Wavehax [7])

we design a Sublime (SUB-band LInear Magnitude-phase
Estimation) vocoder which converts the latent space of the
quantizer z into a log-magnitude spectrogram M̂log and raw
phases P̂ that are inverted using an ISTFT (20ms hop, 40ms
window):

ŷ = ISTFT (eM̂log+iP̂ )

Input of the vocoder z is processed by 4 conv1d blocks
(kernel size 3, 256 hidden channels, 384 feed-forward chan-
nels), then another 4 conv1d blocks (kernel size 3, 256 hidden
channels, 256 feed-forward channels), then three separate
sub-band conv2d decoders are used to produce three 4d
tensors of shape [batch, features, channels, time]. All three
tensors are concatenated along the channel dimension and
projected via conv2d to a [batch, 2, channels, time] tensor
containing the log-magnitudes and phases. These sub-band
decoders emit the following frequency bands: [0 − 2kHz],
[2 − 6kHz] and [6 − 12kHz]. Each sub-band decoder is
composed of a series of Pixel-Shuffle (PS) upsampling layers,
each followed by Universal Inverted Bottleneck (UIB) block
introduced in MobileNet V4 [2] and include multiplicative
activation GEGLU [3]. PS layers upsample only in the channel
dimension, however versions that upsample in time dimension
coupled with 10ms or 5ms ISTFT were also tested. The final
configuration specifies 2 upsampling layers for the 1st and 2nd
sub-band, each with upsample rate [2, 1] and followed by a
single UIB block with 8 feature maps, kernel size [5, 3] in both
depth-wise convolutions, and expansion factor 1.5. The last
sub-band decoder uses a single upsample layer with upsample
rate [4, 1] and a single UIB block with kernel size [3, 3].

Training of the vocoder utilized an ensemble of three dis-
criminators: Multi-Period Discriminator (MPD), Multi-scale
STFT Discriminator (MSSTFTD) and a Multi-scale Magni-
tude Discriminator (MSMAGD) which has the same archi-
tecture as MSSTFTD, but uses log-magnitude inputs, instead
of complex-valued inputs. MSSTFT and MSMAGD use 128
feature maps.

V. TRAINING
Track 1 system has been trained in two phases. In both

phases an encoder with a decoder has been both optimized
with a waveform reconstruction task.

2025 LRAC Challenge – System Description Report 06



In the first phase, temperature has been annealed for 20k
steps from an initial T0 = 0.02 to T1 = 0.01 with a cosine
decay, then for additional 130k steps using an exponential
decay, halving temperature every 8k steps. Temperature floor
was set to TF = 0.01. Losses used in this phase were multi-
scale L1 mel loss with weight wmel = 10.0, multi-scale L1
mfcc loss with weight wmfcc = 1.0, as well as RWSS loss
with weight wrwss = 1.0, smoothing factor ϵ = 0.001 and
q = 0.05.

In the second phase, encoder was frozen, temperature set
to T = 0 and discriminators were enabled. Training losses
consisted of multi-scale L1 mel loss wmel = 10.0, feature-
matching loss wfm = 1.0 and discriminator loss wd = 1.0. In
this phase the network was trained for a total of 160k steps
which is short of the full convergence.

Track 2 system has been trained by freezing the Track
1 system, and training a separate frontend used instead of
the encoder-SAVQ, with a cross-entropy objective. Prediction
of the codes is assumed to be conditionally independent
between the codebooks, and during inference greedy decoding
is performed. Track 2 system has been trained for a total of
120k steps.

All three training runs use AdamW optimizer and follow a
cosine learning-rate decay between lr0 = 2e−4 and lr200k =
1e− 4, with effective batch size of 32.

VI. DATASET

In Track 1, first phase trained with the full provided training
set, with a segment size of 3 seconds. Phase 2 trained with a
clean split of the provided training set, with a segment size of
1 seconds. Track 2 system was trained with a clean split of
the training set, using full utterances and batch zero-padding.
Clean split was obtained by calculating UTMOS score and
taking the top 60% of all utterances.

All training runs set the gain of audio to a dB RMS level
drawn randomly from a [−18dB,−6dB] range. Inputs of the
model are degraded by a sequence of data augmentation steps.
First, random RIR from the provided set of RIRs is convolved
with the input (with probability 25% for Track 1 and 40%
for Track 2), then random noise from the provided set of
training noises is added with a randomly sampled dB SNR
([6dB − 30dB] for Track 1 and [−6dB − 30dB]). Lastly a
down-sampling is simulated with probability 20% of obtaining
8kHz sampling rate, and 50% of obtaining 16kHz sampling
rate.

VII. EVALUATION

Final model checkpoint has been selected by comparing
UTMOS scores calculated on an open testset set, combined
with manual listening. Tables I, II, III, IV, V, VI contain
UTMOS Results of a submitted checkpoint followed by results
of a converged checkpoint (trained for a total of 1.3M steps
for Track 1 and 2M steps for Track 2) in parentheses. All
UTMOS values are calculated on an open testset.

Model Clean

baseline (1 kbps) 1.44
proposed (1 kbps) 2.49 ± 0.5 (2.69 ± 0.51)
baseline (6 kbps) 3.23
proposed (6 kbps) 3.14 ± 0.57 (3.33 ± 0.57)

TABLE I
TRACK 1 UTMOS CLEAN

Model Noisy

baseline (1 kbps) 1.33
proposed (1 kbps) 2.47 ± 0.47 (2.65 ± 0.48)
baseline (6 kbps) 2.7
proposed (6 kbps) 3.05 ± 0.54 (3.21 ± 0.54)

TABLE II
TRACK 1 UTMOS NOISY

Model Reverb

baseline (1 kbps) 1.26
proposed (1 kbps) 2.16 ± 0.43 (2.28 ± 0.42)
baseline (6 kbps) 1.32
proposed (6 kbps) 2.58 ± 0.52 (2.7 ± 0.49)

TABLE III
TRACK 1 UTMOS REVERB

Model Clean

baseline (1 kbps) 1.37
proposed (1 kbps) 2.48 ± 0.48 (2.69 ± 0.48)
baseline (6 kbps) 2.97
proposed (6 kbps) 3.14 ± 0.56 (3.36 ± 0.55)

TABLE IV
TRACK 2 UTMOS CLEAN

Model Noisy

baseline (1 kbps) 1.35
proposed (1 kbps) 2.35 ± 0.51 (2.71 ± 0.53)
baseline (6 kbps) 2.56
proposed (6 kbps) 2.85 ± 0.6 (3.24 ± 0.56)

TABLE V
TRACK 2 UTMOS NOISY

Model Reverb

baseline (1 kbps) 1.32
proposed (1 kbps) 2.27 ± 0.47 (2.63 ± 0.49)
baseline (6 kbps) 1.79
proposed (6 kbps) 2.66 ± 0.55 (3.23 ± 0.55)

TABLE VI
TRACK 2 UTMOS REVERB

REFERENCES

[1] Liu, Z., Mao, H., Wu, C., Feichtenhofer, C., Darrell, T. & Xie, S. A
ConvNet for the 2020s. (2022), https://arxiv.org/abs/2201.03545

2025 LRAC Challenge – System Description Report 07



[2] Qin, D., Leichner, C., Delakis, M., Fornoni, M., Luo, S., Yang, F., Wang,
W., Banbury, C., Ye, C., Akin, B., Aggarwal, V., Zhu, T., Moro, D. &
Howard, A. MobileNetV4 – Universal Models for the Mobile Ecosystem.
(2024), https://arxiv.org/abs/2404.10518

[3] Shazeer, N. GLU Variants Improve Transformer. (2020),
https://arxiv.org/abs/2002.05202

[4] Zeghidour, N., Luebs, A., Omran, A., Skoglund, J. & Tagliasac-
chi, M. SoundStream: An End-to-End Neural Audio Codec. (2021),
https://arxiv.org/abs/2107.03312

[5] Mentzer, F., Minnen, D., Agustsson, E. & Tschannen, M.
Finite Scalar Quantization: VQ-VAE Made Simple. (2023),
https://arxiv.org/abs/2309.15505

[6] Siuzdak, H. Vocos: Closing the gap between time-domain and
Fourier-based neural vocoders for high-quality audio synthesis. (2024),
https://arxiv.org/abs/2306.00814

[7] Yoneyama, R., Miyashita, A., Yamamoto, R. & Toda, T. Wavehax:
Aliasing-Free Neural Waveform Synthesis Based on 2D Convolution and
Harmonic Prior for Reliable Complex Spectrogram Estimation. (2024),
https://arxiv.org/abs/2411.06807

2025 LRAC Challenge – System Description Report 08


