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ABSTRACT to ensure compliance with the challenge’s requirements, the

This paper describes our team’s submission to the 2025 Low-
Resource Audio Codec (LRAC) Challenge, covering the
models for both trackl and track2—with the same model ar-
chitecture used for both tracks. Key details presented include
the model structure, loss function design, hyperparameter set-
tings, computational complexity, and latency. These details
reflect our approach to meeting the low-resource require-
ments of the challenge, providing transparency for our codec
design.

Index Terms— Neural audio codec, residual vector quan-
tilization, audio enhancement

1. INTRODUCTION

Low-resource audio codecs are critical for applications such
as edge devices or low-bandwidth networks, where limited
computing power and storage require efficient compression
without sacrificing audio quality. The 2025 Low-Resource
Audio Codec (LRAC) Challenge was launched to advance
such technologies, setting clear goals to balance perceptual
quality, compression ratio, and resource efficiency across two
tracks.

Our team participated in this challenge, aiming to design
a codec that meets the low-resource criteria while performing
well on both tracks. A key choice in our design is that we used
the same model architecture for trackl and track2—this sim-
plifies development while ensuring consistent performance
principles.

In the following sections, we will detail our model’s struc-
ture, loss function, hyperparameter settings, computational
complexity, and latency. These details explain how our codec
addresses the LRAC Challenge’s requirements and provide a
basis for understanding its performance.

2. DATA PROCESSING

For trackl and track2 of the challenge, we adopted an iden-
tical data selection strategy. Specifically, we utilized the of-
ficial dataset selection script provided by the challenge orga-
nizers to filter and process the data. Through this standardized
script, a total of 340k audio sequences were selected, corre-
sponding to more than 700 hours of speech data. Additionally,
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noise and reverberation data used for data augmentation were
strictly sourced from the datasets specified in the challenge
guidelines.

Before training, the data undergo preprocessing as fol-
lows:

1. Pitch modification: 10% speech signals are applied
randomly with pitch shift in the range of -2 to 12 semi-
tones.

2. Duration normalization: All speech segments are
standardized to 8 seconds. Segments longer than 8 sec-
onds are truncated, while those shorter than 8 seconds
are repeated to reach the target length.

3. Speech type configuration: The preprocessed data
consists of four types with specific proportions: clean
speech, noisy speech, reverberant speech, and multi-
speaker speech.

* For noisy speech, the signal-to-noise ratio (SNR)
is randomly set between -5 and 10.0 in trackl,
-20 and 20.0 in track2. After adding noise, there
is a 40% probability of further applying reverber-
ation.

* Reverberant speech is generated directly using the
challenge-specified reverberation dataset. After
adding reverberation, there is a 40% probability
of further adding noise.

e For simultaneous talkers, the amplitude of one
speaker’s voice is randomly scaled to 0.3 to 1.0
times its original value, then directly summed
with the voice of the other speaker.

The proportions of signal types are as follows in Table 1:

Clean Noisy Reverb Simultaneous
Talkers
Trackl 8 5 5 2
Track2 4 4 1 0

Table 1. Proportions of signal type weights in different tracks

For track 1, the goal is transparent audio transmission, so
its training target is input audio to input audio.For track 2,
the goal is noise reduction and dereverberation, so its training
target is input audio to the denoised and dereverberated audio.
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3. MODEL STRUCTURE

The model is composed of three core components: an en-
coder, a quantizer and a decoder, which processes an input
audio sequence in the time domain with shape [1, T'| and pro-
duces an output sequence with the same shape.

The encoder begins with a ConvlD layer with a kernel
size k = 7. Next, it incorporates 4 repeated modules, with
stride = 3, 4, 5, 8. In each module, 3 residual units with dila-
tion = 1, 3, 9 and SnakeBeta activation are applied. Finally,
a GRU layer is used to leverage inter-frame correlations be-
tween features. The SnakeBeta is defined as follows in Equa-
tion 1:

SnakeBeta(z) = x + %sinz(aa:) €))

The quantizer adopts Residual Vector Quantization: 12
codebooks are used at a bitrate of 6 kbps, while 2 codebooks
are employed at 1 kbps. Additionally, each layer of the code-
books has a size of 1024, and each codebook has a dimension
of 8.

The Decoder starts with a ConvlD layer to project the
quantized features into a suitable dimension for subsequent
processing. 8 Conv2FormerBlocks[1] are stacked to trans-
form and reconstruct the features, leveraging the strengths of
Conv2Former in modeling both local and global feature de-
pendencies. A final Conv1D layer further refines the feature
map, preparing it for time-frequency conversion. Ultimately,
an ISTFT (Inverse Short-Time Fourier Transform) layer con-
verts the processed features back into the time domain. Model
struct is showed in Figure 1.

The model takes 20ms audio data as input. The latency
will be introduced in section 7.

Both tracks used the same model struture with different
model size, the main different params of both model are listed
in Table 2.

Parameter Track1 Track 2
encoder_dim 12 32
encoder_group 4 8
encoder_output_latent_dim 256 512
conv2formerblock_input_dim 372 512
conv2formerblock_hidden_dim 380 620

Table 2. Comparison of model parameters between Track 1
and Track 2

4. DISCROMINATORS AND LOSS FUNCTIONS

4.1. Discriminators

We used a variety of discriminators, including the Multi-
period Discriminator[2], Multi-res STFT Discriminator[2],
Multi-res Subband STFT Discriminator, and Multi-seq length
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Mel-spectrogram Discriminator[3]. All these discriminators
are updated at every training step. Parameters of these dis-
criminators are showed in Table 3.

Discriminator Type Params Values
Multi-period .
Discrirrr)linator periods 2.3
1]\)/11:1;;::;2;1? fft_sizes 64, 128,
256, 512,
1024,
2048
window_lengths 64, 128,
256, 512,
1024,
2048
hop_factor 0.25
Multi-res Subband -
STFT Discriminator fft_sizes 2048,
1536,
1024,
768,512
window_lengths 2048,
1536,
1024,
768,512
hop_factor 0.25
Multi-seq Length
Mel-spec Discriminator n-mel 80
fft_size 1024
fft_window_length 1024
hop-length 512
seq-length 64, 128,
256

Table 3. Parameters of Different Discriminators

4.2. Loss Functions

We employed a range of loss functions in our framework, in-
cluding multiscale mel loss, multiscale STFT loss, discrim-
inator feature loss, generator loss, RVQ commitment loss,
RVQ codebook loss, PESQ[4] loss, and modified multiscale
STFT loss[5]. These losses collectively contribute to optimiz-
ing the model’s performance by addressing different aspects
of audio generation quality, feature alignment, and perceptual
consistency. The total loss functions are defined as follows in
Equation 2:

Loss = A\1LosSer + A2LoSSgs
+ AzLossgisc + A4L0SSgen
+ )\SLOSS\chommil + >\6Losqucodebook
+ )\7Losspesq + )\8L055m0diﬁed,stft (2

5. TRAINING PROCESS

During the model training, we adopted a two-stage training
process. In the second stage, we significantly reduced the

10



SnakeBeta(N)

Conv1D(k=3, n=2N, '
group=4, dilation) | !
i

Conv1D(k=2S,
n=2N, stride=S)

SnakeBeta(2N)

y

Conv1D(k=1, n=N,

k‘ group=4)
|

4

ResidualUnit

Conv1D(k=3,
n=256)

Encoder

\
.
T N . .
X .

Input:[1,T] N N

Encoder f
8% | Conv2FormerBlock

h /
! Quantizer !
| |
k /

]
!

Decoder

) output:[1,T]
Decoder

ISTFT

Fig. 1. Schematic diagram of the model architecture

weight of the mel loss, which facilitates the generation of
clear harmonics in the audio. We only applied the two-
stage training to the model for Track 1, while the model
for Track 2 only underwent one-stage training.

Training parameters are defined in Table 4.

Param Stage 1 Stage 2
Batch size 16 16
Training steps 800000 200000
LR 0.0001 0.0001
LR decay (Exp) 0.999996  0.999996

Table 4. Training parameters (two stages)

During the training of the model, half of the training it-
erations bypass quantization entirely. For the remaining half
quantization-enabled training, the codebook dropout method
is adopted to support training for multiple bitrates.

Loss functions weights for different training steps are
listed in Table 5.

Loss lambda Stage1 Stage 2
Al 15.0 1.0
Ao 10.0 10.0
A3 2.0 2.0
A 1.0 1.0
A5 0.25 0.25
A6 1.0 1.0
A7 5.0 5.0
s 10.0 10.0

Table 5. Loss function weights (\) for different training
stages
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6. PARAMETER COUNTS AND COMPUTATIONAL
COMPLEXITY

We statistically analyzed the computational complexity and
parameter counts of the two models. The computational com-
plexity includes Short-Time Fourier Transform (STFT) oper-
ations and codebook distance computation. The parameter
counts and computational complexity are listed in Table 6.

Metric & Module Unit Track1l Track?2
Model Complexity

Encoder mmacs 192.75 937.69
Quantizer mmacs 7.73 9.83
Decoder mmacs 147.01 297.13
Parameter Count

Encoder M 0.973 5.145
Quantizer M 0.154 0.209
Decoder M 2.954 5.967

Table 6. Comparison of Model Complexity (mmacs) and Pa-
rameter Count (M) between Track 1 and Track 2

7. SYSTEM LATENCY

The encoder accepts 20-ms audio frames as input. The de-
coder outputs 40-ms audio, consisting of 10 ms of prior au-
dio, 20 ms of current audio, and 10 ms of subsequent audio.
For seamless output, the 20 ms of current audio needs to be
overlapped and added with the 10 ms of subsequent audio, re-
sulting in a decoder latency of 10 ms. The total latency is the
sum of the encoder frame size (20 ms) and decoder latency
(10 ms), totaling 30 ms. The schematic diagram of system
latency is shown in Figure 2.
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Fig. 2. System latency description
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