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ABSTRACT

This paper is a description of our team’s submission model
for LRAC track 1, introducing the HORCODEC based on
HORNET, including model structure, training methods, and
other details. By introducing Horunit into classic methods
such as soundstreaemDAC model and RVQ, our model can
consistently improve dense prediction performance with less
computation, achieving transparent sound quality as much as
possible within the low complexity requirement by LRAC.

Index Terms— neural audio codec, residual vector quan-
tilization

1. INTRODUCTION

High quality and low latency audio encoding algorithms are
crucial in real-time communication field. With the rapid
development of deep learning technology in recent years,
audio codec based on deep neural networks, represented by
soundstream[[1]], DAC[2], have significantly improved com-
pression efficiency compared to traditional audio encoders
such as AAC and OPUS. However, the high latency and high
complexity of encoding and decoding are fatal flaws of deep
neural network-based audio codecs, which prevent them from
being widely used in real-time communication. Regarding
this issue, LRAC competition track 1 has made clear reg-
ulations on the complexity and delay of encoder encoding
and decoding. This is extremely challenging for deep neural
networks-based audio encoders. To achieve the ultimate goal
of low complexity, low latency, and transparent sound quality,
we have researched the current mainstream audio encoding
methods based on deep neural networks and have referred
to the forefront of deep learning in computer vision. Based
on the DAC and VOCOS frameworks, we have added the
improvement of the basic modules in the transformers de-
scribed in HORNETY3]]. Under the premise of satisfying the
requirements of complexity and latency in LRAC, the sound
quality of our proposed codec is as close as possible to the
original high-complexity DAC.
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2. MODEL STRUCTURE

The over view of the proposed codec is shown in Figure 1.
The input audio is divided into frames with a frame length
of 20ms. The output feature of the encoder network is coded
by RVQ, with 0.5kbps for each layer. On the decoder side,
the input feature is transformed to the frequency domain, and
then audio signals in the time domain are generated by ISTFT.
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Fig. 1. overview

2.1. Encoder Block

The encoder structure is shown in Figure 2. The first 1D con-
volution module is set to kernel size k=7. Then four residual
convolution modules are applied in sequence with each stride
=3, 4, 5, 8. For each residual convolution module, there are
3 residual units in it and each residual unit’s dilation is 1, 3, 9
respectively.
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Fig. 2. encoder block
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2.2. Decoder Block

Inspired by Hornet in computer vision, we modified the mod-
ule based on 2D convolution design in Hornet and applied
it to audio signal processing. The decoding end receives the
quantized feature vectors, which are sequentially processed
through one 1D convolution module, 6 horunit modules, and
one 1D convolution module before being converted to the fre-
quency domain. The frequency domain signal is then trans-
formed back to the time domain through ISTFT. Each ho-
runit module contains one gConv gating module and one FNN
module in sequence, with the gConv gating order set to 3, as
shown in Figure 3.

Fig. 3. decoder block

2.3. Quantizer

The features outputted from each frame undergo RVQ (Resid-
ual Vector Quantization) hierarchical residual layer coding,
consisting of 12 layers. Each layer has 1024 codeword candi-
dates, which requires 10 bits per layer during encoding. Given
that the encoding segment is divided into 20ms frames, the bit
rate for one layer of RVQ quantization stands at 0.5kbps. If
the target bit rate is 6kbps, all 12 layers of RVQ are employed;
whereas if the target bit rate is 1kbps, only the first two layers
of RVQ are utilized.

2.4. Computational Complexity
The parameter count and computational complexity of each
module in the model are shown in Table 1

2.5. System Latency

Since the encoder frame length is 480 points (i.e. 20ms) and
there are 240 points (i.e. 10ms) frame overlapping in the de-
coder, the system latency is 30ms, satisfying the challenge
requirement.
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Parameter Count Model Complexity

Enocder 0.98M 172.97TMMACs
Quantizer 0.19M 1.06MMACs

Decoder 3.01M 154.78MMACs
Total 4.18M 328.82MMACs

Table 1. Computational Complexity

3. TRAINING

3.1. Data Processing

On the premise of complying with the competition require-
ments, we have pre-processed the data provided by the offi-
cial to achieve data augmentation. When generating noisy
frequencies, randomly select SNR within a preset inter-
val. When generating reverberation data, follow the official
method and generate it with an appropriate reverberation ra-
tio. For multispeaker data, randomly adjust the volume of a
certain speaker.

3.2. Loss Setups

Training is carried out in the form of a generative adversary
mode,which is the same as SoundStream and DAC. As de-
scribed in Equation 1, the total loss of the model is consist of
GAN-based loss L4, RVQ commit loss L., RVQ code book
loss L, related to RVQ to improve the efficiency of code book
utilization. The reconstruct loss L, is set to ensure that re-
constructed signal is as consistent as possible with the refer-
ence input.

EZAg*£g+>\c*£c+/\r*ﬁr+>\r6*£7’e (1)

Since the reconstruction loss does not occupy the com-
plexity of encoding and decoding, we set a loss function as de-
tailed as possible to evaluate the quality of the reconstructed
signal, although this may slow down the training process. The
reconstruct loss is set with multiscale STFT loss L ¢+, mul-
tiscale MEL loss L,,,c;, PESQ[4] loss Lpeqq. The multiscale
STFT loss is set with window lengths of 256, 512, 1024 and
2048. The multiscale MEL loss is set with window lengths
of 32, 64, 128, 256, 512, 1024 and 2048, corresponding mel
bin counts of 5, 10, 20, 40, 80, 160, and 320, respectively.
All loss functions are weighted with appropriate coefficients
as part of the final loss.

Erecon = )\s * Lstft + )\m * £mel + Ap * ‘Cpeaq (2)
All the weight coefficients are described in Table 2.

3.3. Network Training Configurations

The learning rate is initialized at 0.0001 and decays by a fac-
tor of 0.999996 every epoch, as described in the exponential
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loss weight  value

Xy 1.0
Ac 0.25
A 1.0
Are 1.0
As 10.0
Am 15.0
Ap 5.0

Table 2. loss weight configuration

learning rate scheduling technique. The Optimization is per-
formed with Adam, using betas of 0.8 and 0.99.

We train the networks with a batch size of 16 per GPU,
and 8 GPUs were used in training progress for Track 1 in total.
The model is trained for 500 epochs. We use the checkpoint
with the lowest reconstruction loss on the validation set. The
reconstruction loss configuration is described in subsection
3.2.
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