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ABSTRACT

In this report, we present NanoCodec, our submitted system for the
LRAC Challenge Track 1, which can effectively reconstruct target
waveform under ultra-low and low bitrates conditions. Specifically,
our architecture operates in the time-frequency (T-F) domain, where
we drop the phase and only encode the magnitude feature in the en-
coder side, and both are estimated in the receiver side. In addition,
we propose an efficient convolution-style attention block as the core
modeling unit. Given the strict constraint on the decoder complexity,
the omnidirectional phase and real-imaginary losses are introduced
to enable the effective joint optimization of target magnitude and
phase. The submitted system achieves a total latency of 30 ms and
a computational complexity of 685 MFlops (390M for the encoder
and 295M for the decoder), satisfying the challenge requirements.

Index Terms— Neural audio codec, low-complexity, low bi-
trate, real-time, speech transmission

1. INTRODUCTION

Audio codecs are designed to convert original waveforms into com-
pact bitstreams for transmission, followed by target decoding at the
receiver. In recent years, neural audio codecs (NACs) have surged in
popularity, propelled by the advancement of large language models
(LLMs). Compared to traditional methods, NACs offer both higher
compression ratios and reconstruction quality over [1}2]]. However,
while most studies leverage NACs as audio tokenizers for generation
tasks, real-time audio transmission remains underexplored [1} 3],
where computational cost, causality, and algorithmic delay are re-
garded as significant factors to hinder the deployment of NACs in
practical transmission scenarios.

LRAC Chalenge 2025 aims to gather research attention in real-
time (RT) audio transmission under strict constraints on training
dataset, calculation complexity and processing delayﬂ Specifically,
Track 1 is devised for transparent transmission, with a maximum
complexity of 700 MFlops (400 M for the encoder and 300 M for
the decoder), and a total latency < 30ms. To our best knowledge,
existing literature rarely satisfies these requirements, thus posing a
significant challenge for neural audio codec design.

To this remedy, in this paper, we present the proposed NanoCodec,
which contributes in both architecture design and optimization
regime. First, the proposed codec is based on time-frequency (T-F)
domain, where we ignore the phase and only magnitude is uti-
lized for feature encoding, and both targets are reconstructed in
the decoder. The rationale lies in that given the limited calculation
resource, it seems challenging for target coding or estimation in the

Uhttps://crowdsourcing.cisco.com/Irac-challenge/2025/
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time domain. As such, we employ the Fourier prior to alleviate the
learning difficulty. Besides, given the limited bit resource, separate
phase encoding can be trivial due to the wrapping effect of phase
component. Second, we adopt a convolution-style attention block
for spectral modeling, where the attention distribution is generated
via large convolution kernels to effectively aggregate the contextual
information. Third, it remains an open question for joint magnitude
and phase estimation, especially under limited calculation resource.
Motivated by [4], we employ an omnidirectional phase loss for
phase optimization, efficiently capturing differential relations be-
tween centering and neighboring phase bins. we further generalize
it into the real and imaginary (RI) parts of the spectrum, and propose
an omnidirectional RI loss. By incorporating the above-mentioned
tactics together, NanoCodec can reconstruct waveforms with high-
quality under both low complexity and low bitrate scenarios.

2. METHOD ILLUSTRATIONS
2.1. Overall Architecture

The overall diagram of the proposed NanoCodec is presented in
Fig. [T{a), where both encoder and decoder are operated in the T-F
domain. Given the input waveform x € RY, it is first transformed
into the spectrum X € CF*7 via the short-time Fourier transform
(STFT), where {F', T} denote the frequency and time axes, respec-
tively. Different from previous literature where magnitude and phase
are separately encoded [5], here we drop the phase and only pre-
serve the magnitude for feature extraction. The reasons are two-fold.
First, due to the restricted computational complexity in the encoder,
as well as limited bit resource, the modeling priority should be pro-
vided to the magnitude as it exhibits more clear structural patterns
over phase. Besides, phase usually exhibits random distribution due
to the intrinsic wrapping effect, and it can be trivial for separate fea-
ture extraction from phase. Motivated by [6], the energy-content
decoupling (ECD) layer is utilized to decouple the spectral energy
and content, which is reported to mitigate the extra input energy nor-
malization operation, given by:

I; = Concat (log (Ey), pé—t‘) e R, 1)
t

where E: denotes the calculated energy for the ¢-th input frame, and

Concat (-) is the concatenation operation along the feature dimen-

sion. After that, N. modeling units are stacked for modeing.

For the decoder, similar to the encoder, Ny modeling units are
stacked, and separate magnitude and RI heads are adopted for mag-
nitude and phase estimation, respectively. After that, the inverse
STFT operation is utilized for target waveform generation.
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(a) Overall Diagram of the NanoCodec
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Fig. 1. (a) Overall structure of the proposed NanoCodec; (b) Internal structure of the adopted LKCAB.
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Fig. 2. Illustration of the omnidirectional phase loss.

2.2. Large Kernel Convolution-Style Attention Block

We share the same modeling unit for both encoder and decoder, and
detailed internal structure is shown in Fig. [[(b). Given the input
H;_; € REXCin*T of the i-th block, where Cl,, represents the in-
put feature channel, it passes the attention branch and value branch to
obtain the attention and value feature maps{A;, V,;} € RBXCnxT
respectively. Here C}, indicates the hidden channel size. Motivated
by [7]], instead of adopting self-attention by calculating the pair-wise
similarity scores, we enable it via a depth-wise convolution opera-
tion with large kernels (LD-DWConv1d) to enhance the processing
efficiency. After that, a point-wise convolution (PConv1d) is adopted
to return to the original input space, followed by residual connection.
Note that, to reduce the overall computational complexity, we use the
group-convolution for PConvld. The causal setting is adopted, i.e.,
the padding operation is only applied along the past frames, and no
future information is involved. Formally, the process of the LKCAB
can be formulated as:

A; = LK-DWConvld (GELU (PConvld (LN (H;_1)))), (2)

V; =PConvld (H;—1), 3)
H; =H,_; +PConvld (A; ® V), @)
where “®” denotes the element-wise multiplication operation.
3. MISCELLANEOUS CONFIGURATIONS

3.1. Loss Setups

We incorporate the reconstruction, adversarial, and perceptual losses
for training. For the first term, we include the log-spectral ampli-
tude loss £, multi-resolution Mel loss L, consistency 10ss Lcons,
phase loss £, and RI loss L.
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The amplitude loss evaluates the mean-square error (MSE) be-

tween ‘5(’ and |X]| in the log-domain:

2
—log [X ¢ )

1 ~
Lo=— fZ o | X1 ®)

Inconsistency can arise when the generated spectrum in the T-
F domain is not necessarily equal to the STFT of it time-domain
counterpart [8]. To mitigate this issue, the consistent spectrum is

defined as S = STFT (iSTFT (S) ) , and consistency loss is given
by:

2

e o3 ([0 R (50
1t

2
) . (6)
2

Motivated by [9], we use multi-resolution Mel loss, which was
reported to yield better performance over the single-resolution ver-
sion, given by:

Lmet = FTS Z Z med W -XT

where {Xmel, X mel

+||zBse) -

; (N

1

} are the estimated and target Mel spectra, re-

spectively. (+) () denotes the Mel spectrum under the s-th resolution
scale. Here seven window sizes are adopted: {32, 64, 128, 256, 512,
1024, 2048}, and hop length set to window_length / 4. Besides, we
use mel bin sizes {5, 10, 20, 40, 80, 160, 320}.

Motivated by [4], we employ an omnidirectional phase loss, as
shown in Fig. ] To be specific, a specially devised kernel K €
R?*3%3 is applied to the estimated and target phase, to obtain the
omnidirectional differential between the centering and neighboring
phase bins:

By =DPxK, D =Pk, @®)

where “*” denotes the convolution operation, and {i,@} S

RO*FXT are the convolved results for estimated and target phase,

respectively. The phase loss can be calculated as:
1

We further generalize it into the RI loss. Concretely, we first
decouple the magnitude and phase, then the omnidirectional opera-
tion is employed to extract the differential phase representation, i.e.,

(©)]
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P, i)} The corresponding omnidirectional RI loss can be defined
as:

P ) (Rep ([%[) cos (#) - Rep 1Dy cos (&)

+ HRep (‘XD sin ('il') — Rep (|X]) sin (sf:’)
10

where Rep (-) denotes the tensor repeat operation, i.e., R™F*T —
RO*FXT The overall reconstruction 10ss Lrecon can be defined as:

['recon - /\aca + )\c['c + )\mel‘cm,el + ApL"p + /\ri[rriy (11)
where {Aa, Ac, Amel;s Ap, Ari} are the corresponding weighting
hyper-parameters, and set to {45.0, 20.0, 45.0, 50.0, 45.0}, respec-
tively.

For adversarial loss, we incorporate the multi-period discrimina-

tor (MPD) [10], multi-resolution STFT discriminator (MRSTFTD) [3]],

and multi-band discriminator (MBD) [9], and the hinge loss is
adopted to calculate the adversarial loss. For each sub-discriminator
in MPD, the 1-D raw audio waveform is reshaped into 2-D for-
mat with period p, then processed through consecutive Conv2D
layers and leaky ReLU for score computation. The periods are
set to {2, 3}[ﬂ For MRD, three sub-discriminators process mag-
nitude spectra via stacked Conv2d layers to calculate the dis-
criminative score. The {window_size, hop_size, nfft} are set to
(128,32,128), (256, 64, 256), (512,128,512), (1024, 256, 1024),
and (2048, 512, 2048), respectively. For MBD, we divide the over-
all spectrum into five band regions: {(0, 0.1), (0.1, 0.25), (0.25,
0.5), (0.5, 0.75), (0.75, 1.0)}. The {window_size, hop_size, nfft}
are set to (256, 64,256), (512,128,512), (1024, 256, 1024), and
(2048, 512, 2048), respectively. The trainable parameters of the
three discriminators are 3.4 M, 6.3 M, and 7.5 M, respectively. The
weighting hyper-parameters of the adversarial and feature-matching
losses are set to 1.0, 2.0, respectively.

Besides, the feature matching loss is also incorporated. For
perceptual-based loss, to promote the performance on objective met-
rics, we include the PESQ losﬂ and UTMOS losq’| for optimization.
We also utilize the pre-trained SCOREQ model’| and maximize the
output similarity score between the estimation and target waveforms.
Note that, to accelerate the network training, we only add the percep-
tual loss in the finetune stage, and the weighting hyper-parameters
{Apesqs Autmos; Ascoreq } are set to {5.0, 5.0, 5.0}, respectively.

3.2. Dataset Setups

For codec training, we use the speech clips from LibriSpeech [11]],
DNS-Challenge [12]], VCTK [13] and EARS [14]. Note that we did
not use the CommonVoices [[15] due to its relatively low quality. For
noise set, we include DNS-Challenge noise se WHAM! [16] and
FSDS50K [17]. For reverberation generation, we include the RIRs
from Open SLR 28[] and our synthesized 100 k RIR clips. To adapt
to practical acoustic scenarios, we adopt the on-the-fly (OTF) train-
ing strategy, that is, we randomly combine noise and reverberation
during the training process. For noise, the average SNR value is 15

2We empirically observe that more period settings can damage the perfor-

mance in the light-weight audio codec design.
3https://github.com/audiolabs/torch-pesq
“https://github.com/tarepan/SpeechMOS/tree/main
Shttps://github.com/alessandroragano/scoreq
Shttps://github.com/microsoft/DNS-Challenge
https://www.openslr.org/28/
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dB, with the variance of 7.5 dB. The probability to include noise and
reverberation are 0.15 and 0.15, respectively. We also include the
multi-speaker case{ﬂ with the overlap ratio randomly sampled in the
range of [0.5, 0.95], and the probability is set to 0.15. To mitigate the
possible audio clip, we randomly rescale the waveform value from
the range of [0.218,0.917]. No other data augmentation strategies

1 ;Lé adopted. All training clips are chunked to 2.0 second to stabilize
the training.

3.3. Network Setups

For both STFT and iSTFT, the target sampling rate is 24 kHz. The
window size is set to 30 ms, with 10 ms overlap between adjacent
frames. 720-point FFT is adopted, leading to 361-D input features.
Thus, the overall system latency is 10 + 20 = 30 ms, which satis-
fies the challenge rule. For network encoder, the input and hidden
channel {Cj,,C),} are set to {372,372}, and N. = 6 blocks are
adopted. For the decoder, the input and hidden channel {Ci,, C)}
are set to {260,360}, and Ng = 6 are adopted. For both sides,
we set the kernel size of the LK-DWConv1d to 7, and the number
of groups for PConv1d is set to 2 to reduce the computational com-
plexity. For the quantization process, motivated by [9]], we adopt the
factorized quantizer, and the codebook dimension is set to 8. For
1 kbps and 6 kbps settings, {1,6} codebooks are utilized, respec-
tively, and the codebook size is set to 1024. As a result, the average
computational complexity of the encoder and decoder are around
390.18 MFlops (including 8.76 MFlops for quantization) and 295.12
MFlops. The trainable parameters of the encoder and decoder are
2.04 M and 1.48 M, respectively.

3.4. Training Setups

The training is based on the Pytorch-Lightning platform, and Two
NVIDIA A100 are employed. The total batch size is 32, and we
train the network for 1.5 M steps in total, where the discriminators
are updated per three steps to reduce the GPU assumption. For the
first 1.2 M steps, only reconstruction loss and adversarial loss are
adopted. After that, we incorporate the perceptual loss in the remain-
ing finetune stage. The AdamW optimizer [18] is employed, and the
learning rate is initialized at 2e-4, with the exponential decay in the
batch level, and the decay rate is set to 0.999996. Besides, the ex-
ponential moving average (EMA) strategy for generator update, and
the decay rate is set to 0.999.
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