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ABSTRACT

We propose a frequency-domain Denoising Codec for the
2025 Low-Resource Audio Codec (LRAC) Challenge that
jointly performs speech coding and noise suppression under
strict constraints on complexity, latency, and bitrate. By inte-
grating enhancement into the coding pipeline and employing
residual vector quantization (RVQ), the system allocates bits
to perceptually important speech components while reducing
the noise. A three-stage training process combines spectral
reconstruction with adversarial objectives to ensure stable
optimization and high-quality output. Experiments across
clean, noisy, and reverberant conditions demonstrate consis-
tent improvements in both coding fidelity and robustness.

Index Terms— speech codec, noise suppression, low re-
source, LRAC

1. INTRODUCTION

Neural audio codecs are emerging as powerful alternatives to
traditional speech coders such as AMR-WB and Opus, deliv-
ering improved perceptual quality and flexible bitrate adap-
tation. Recent advances, SoundStream [1], Encodec [2], and
DAC [3] employ autoencoder-based architectures with RVQ
and adversarial training, achieving high-quality reconstruc-
tion at low bitrates.

In parallel, neural speech enhancement has advanced
rapidly. Architectures such as U-Net [4], DCCRN [5],
and DeepFilterNet [6] demonstrate robust noise suppression
across diverse acoustic environments. Leveraging convo-
lutional encoder–decoder backbones, recurrent layers, and
attention mechanisms, these models effectively disentangle
clean speech from noise and reverberation.

However, most codecs and enhancement systems are de-
signed and optimized independently: codecs focus primarily
on compression efficiency and reconstruction fidelity, while
enhancement models target noise reduction and dereverbera-
tion. Under realistic constraints on complexity, latency, and
bitrate, separating enhancement from coding can be subopti-
mal. A unified approach enables efficient bit allocation for
perceptual speech quality and effective noise suppression.

The 2025 LRAC Challenge provides an ideal platform for
such integrated solutions, emphasizing neural speech codecs

Fig. 1. The proposed model architecture.

operating under realistic noise and reverberation with strict
limits on complexity, latency, and bitrate. It encourages uni-
fied designs that jointly address speech coding and enhance-
ment within a low-resource framework. Motivated by this,
we propose a frequency-domain Denoising Codec jointly op-
timized for noise suppression and speech coding.

2. METHOD

2.1. Architecture

The proposed end-to-end Denoising Codec is illustrated in
Figure 1. It comprises an encoder, an RVQ module [1, 2],
and a decoder, and operates entirely in the frequency domain.
The noisy input signal is first transformed into a spectrogram
via STFT, which is processed by the encoder to generate
downsampled latent vectors; these vectors are quantized by
RVQ and then reconstructed by the decoder through upsam-
pling. The resulting spectrogram is finally converted back to
the time domain using iSTFT. Noise suppression is implicitly
achieved throughout the encoding–decoding process.

The encoder consists of a complex convolutional layer
followed by 4 FdownBlocks and RNNBlocks, which perform
downsampling, feature extraction, and implicit denoising.
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Table 1. Evaluation results for different bitrates and acoustic conditions.

Clean Noisy Reverb

Bitrate Method
sheet
ssqa

scoreq
ref

audiobox
AE CE utmos pesq sheet

ssqa
scoreq
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audiobox
AE CE utmos pesq sheet

ssqa
scoreq

ref
audiobox
AE CE utmos pesq

1kbps
Baseline 2.07 1.01 3.96 1.37 1.21 1.95 1.15 3.70 1.35 1.18 2.43 1.12 3.55 1.32 1.15

Proposed 3.44 0.43 5.23 3.18 2.07 3.11 0.61 4.9 2.94 1.8 2.27 0.95 4.32 2.05 1.38

6kbps
Baseline 3.55 0.43 5.25 2.97 2.13 2.92 0.75 4.60 2.56 1.73 2.67 0.92 4.25 1.79 1.29

Proposed 4.22 0.18 5.62 3.80 3.34 3.78 0.41 5.17 3.47 2.41 2.96 0.74 4.62 2.30 1.61

Each FdownBlock includes two 1×1 convolutions and one
downsampling convolution, incorporates a gating mechanism
to enhance feature extraction, and adopts a Snake2D acti-
vation [7] to improve harmonic structure modeling. Each
RNNBlock contains batch normalization, a GRU, and a 1×1
convolution, with residual connections to preserve gradient
flow. The decoder mirrors the encoder with 4 RNNBlocks and
FupBlocks for upsampling, followed by a final convolutional
layer for spectrogram reconstruction. Due to computational
constraints, each FupBlock contains only a transposed con-
volution and a Snake2D activation.

The model is trained using a loss function that combines
complex spectrogram loss, multi-scale Mel-spectrogram loss,
and a GAN-based loss, where Multi-Period (MPD) and Multi-
Resolution (MRD) discriminators [8] are employed to capture
both fine-grained temporal details and spectral characteristics.

2.2. Training Stages

We employ a three-stage training pipeline. (1) A quantizer-
free encoder–decoder model is trained exclusively for the
denoising task, optimized solely with a complex spectral loss
to establish a clean and stable representation space for sub-
sequent quantization. (2) Quantizer Integration: A quantizer
is then incorporated into the pre-trained denoising model,
and the entire system is jointly optimized for both denois-
ing and codec objectives while still employing the complex
spectral loss. This staged integration stabilizes training by
initializing the quantizer within a well-structured representa-
tion space, thereby maintaining denoising performance while
enabling effective quantization. (3) Perceptual Fine-tuning:
Finally, the model is fine-tuned to enhance the perceptual
audio quality by replacing the loss function with a multi-
scale Mel-spectrogram reconstruction loss and introducing
adversarial objectives via MPD and MRD. This combination
further improves the naturalness and fidelity of the recon-
structed audio.

3. EXPERIMENTS

3.1. Datasets

The 2025 LRAC Challenge provides training datasets com-
prising speech, noise, and room impulse response (RIR) sub-
sets. All datasets are first resampled to 24 kHz, followed by
curation to form finalized training subsets. Specifically for
the noise dataset, we utilize a pre-trained audio understand-
ing model to predict audio labels, and further filter out ”dirty”
data samples bearing speech labels.

To further enhance the generalization capability of the
model, training data is synthesized online using randomly
sampled parameters at each training step. The data augmen-
tation is detailed as follows: Noisy conditions are simulated
by mixing speech and noise at a probability of 0.75, using a
signal-to-noise ratio (SNR) uniformly sampled from the range
of -5 to 15 dB. Reverberation is simulated by convolving the
speech signal with a RIR at a probability of 0.4. For the cor-
responding target speech, the RIR undergoes truncation com-
mencing 1 ms after its peak amplitude prior to convolution.

3.2. Implementation Details

The proposed model has a total computational complexity
of 2595M FLOPs and 3.9M parameters. Specifically, the
encoder together with the RVQ module accounts for 1997M
FLOPs and 2.5M parameters, while the decoder requires
598M FLOPs and 1.4M parameters. The system is designed
for a sampling rate of 24kHz, with a frame length of 720
samples and a frame shift of 312 samples. No future frames
are utilized, resulting in an algorithmic latency of only 30ms.
The RVQ module contains 6 codebooks, each with a size of
8192 entries (equivalent to 13 bits) and a vector dimension
of 16. During inference, the RVQ can dynamically select
between using 1 to 6 codebooks, enabling bitrate scalability
from 1kbps to 6kbps.

Due to computational constraints, the channel configura-
tions of the encoder and decoder are asymmetric. The Fdown-
Blocks in the encoder have channel sizes of [48, 144, 192, 288]
with strides [6, 5, 4, 3], while the upsampling layers in the de-
coder have channel sizes of [24, 48, 124, 288].
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The MPD employs period settings of [2, 3, 5, 7, 11], while
the MRD adopts [3072, 1536, 768, 384, 206, 126, 78] as win-
dow sizes [9]. Additionally, The generator is trained with a
learning rate of 3 × 10−4, while the discriminator uses 1 ×
10−4. The Adam optimizer is employed throughout all train-
ing stages.

3.3. Results

Our evaluation employs Versa [10], the official evaluation
toolkit recommended by the 2025 LRAC Challenge, which
provides standardized implementations of metrics such as
sheet ssqa, score ref, audiobox AE CE, UTMO, and PESQ.
Experiments are conducted under three acoustic conditions:
clean, noisy, and reverberant. Leveraging the RVQ module,
which supports variable-bitrate operation by selectively dis-
carding codebooks during inference, we further assess the
model’s performance at 1 kbps and 6 kbps.

The evaluation results are summarized in Table 1, where
the proposed method demonstrates significant improvements
over the baseline across all metrics under all three acous-
tic conditions and at both 1 kbps and 6 kbps bitrates. The
evaluation across different acoustic conditions reveals distinct
characteristics of Denoising Codec. In clean scenarios, the
model demonstrates superior performance in speech compres-
sion and reconstruction. For noisy and reverberant conditions,
it exhibits strong robustness by effectively suppressing back-
ground noise and reverberation. However, the audio quality
under reverberant conditions is somewhat compromised com-
pared to other scenarios.

4. CONCLUSION

We presented a unified Denoising Codec that integrates
speech coding and noise suppression in the frequency do-
main, enabling scalable bitrate via RVQ and delivering high
perceptual quality across diverse acoustic conditions. The
staged training strategy stabilizes optimization and enhances
overall performance while meeting strict low-resource con-
straints. Future work will focus on further improving recon-
struction quality under strict low-resource constraints.
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