
EFFICIENT REAL-TIME AUDIO CODEC WITH INTEGRATED SPEECH ENHANCEMENT
TECHNIQUES

Weihao Xiong, Congxin Zhang, Xinming Yan, Qingbo Huang

ByteDance

ABSTRACT

This paper presents our submission model for the 2025
Low-Resource Audio Codec (LRAC) Challenge, which is
an efficient real-time audio codec with integrated speech
enhancement techniques. The model is composed of three
primary components: an encoder, a quantizer, and a decoder.
To achieve better performance, the encoder module encodes
the noisy audio into clean embeddings with the constraint
of a pretrained codebook. Then the decoder decoders the
clean embedding to audio wavforms. This system operates
with a 50ms latency and a computational complexity of 2.68
GFLOPS, with the decoder contributing 0.58 GFLOPS.

Index Terms— Speech Enhancement, audio codec

1. OVERVIEW OF OUR SYSTEM

This model is primarily built upon advancements from previ-
ous codecs and vocoders [1, 2, 3, 4]. The model operates in
the frequency domain, where an STFT (Short-Time Fourier
Transform) is applied before the encoder and an iSTFT (In-
verse STFT) is performed after the decoder. Within the
model, only the magnitude of the STFT is processed.

The STFT and iSTFT processes utilize a 50ms window
length (1200 samples at 24000hz) and a 12.5ms hop size (300
samples), resulting in a total latency of 50ms. The 1kbps
codebook consists of 5,792 numbers, producing a bitrate of
1kbps, calculated as 1

12.5 · log2(5792). For the 6kbps con-
figuration, the model extends the 1kbps codebook with six
additional codebooks, each containing 1,024 numbers. This
setup results in a total bitrate of 5.8kbps, computed as 1

12.5 ·
(log2(5792) + log2(1024) ∗ 6)).

The model includes a total of 11.96 million trainable pa-
rameters and has a computational complexity of 1.34 GMacs
(2.68 GFLOPS).”

2. ENCODER

The encoder module, referred to as the FullBandEncoder,
processes input data through three main components: an input
feature extractor (in fc), a series of eight sequential blocks
(blocks), and an output projection head (out head). The

overall architecture has 8.2M parameters and a compu-
tational complexity of 662.66MMACs (Million Multiply-
Accumulate operations), which accounts for 50.829% of
the total parameters and 39.592% of the total MACs in
the network. The encoder aims to capture temporal and spa-
tial dependencies in sequential data while maintaining high
computational efficiency.

2.1. Input Feature Extraction (in fc)

The first component of the encoder is the input feature extrac-
tor (in fc), which processes the raw input data. This mod-
ule has 1.34M parameters and contributes 108.31MMACs
(8.294% Params, 6.471% MACs). It consists of the follow-
ing layers:

• ChannelNormalization: This normalization layer sta-
bilizes the input data by re-scaling the channel dis-
tributions. As a computationally free module (0%
Params, 0% MACs), it improves model training and
convergence behavior.

• Conv1d Sequential Block:

– ConstantPad1d: Padding is applied (padding=(2,
0)) to ensure dimensional alignment prior to con-
volution. This layer does not add any computa-
tional cost.

– Conv1d: A convolutional layer with 1.34M pa-
rameters, configured with 602 input channels
(in consistancy with stft freq bins), 740 output
channels, a kernel size of 3, and a stride of
1. This operation extracts local features while
increasing dimensionality to match the hidden
size.

2.2. Sequential Blocks (blocks)

Motivated by [5], the second component consists of eight
Large Kernel Convolution-Style Attention Blocks (LK-
CABs), which are implemented through a ModuleList.
Each block has 833.98k parameters and a computational
complexity of 67.37MMACs (5.170% Params, 4.025%

2025 LRAC Challenge – System Description Report 27



MACs). Collectively, the blocks account for the primary
processing in the encoder.

Each LKCAB focuses on capturing temporal and spatial
dependencies through its attention module, value module,
and output projection layer. These are described in detail
below:

2.2.1. Attention Module (attn)

The attention module processes sequential data through a
combination of normalization, convolutional operations, and
non-linear activations in the following pipeline:

• ChannelNormalization: A normalization layer pre-
pares the input channels for processing without adding
to the computational complexity (0% Params, 0%
MACs).

• First Conv1d Sequential Block:

– ConstantPad1d: Padding ensures consistent in-
put dimensions without adding parameters or
MACs.

– Conv1d: This convolutional layer has 275.28k
parameters and operates on 740 input and out-
put channels. It uses a kernel size of 1, stride
of 1, and groups=2, enabling separable convolu-
tion for efficient feature extraction. It accounts
for 22.24MMACs, or 1.706% Params, 1.329%
MACs.

• GELU Activation: A GELU (Gaussian Error Lin-
ear Unit) introduces non-linearity into the pipeline.
GELU has no parameters and a negligible compu-
tational cost of 59.94KMACs (0.004% MACs), but
it provides smooth and continuous activation for im-
proved gradient flow and feature learning.

• Second Conv1d Sequential Block:

– ConstantPad1d: Padding aligns the input se-
quence for the subsequent convolutional layer.

– Conv1d: A depthwise convolutional layer con-
figured with 8.14k parameters. It operates on
740 input and output channels, with a kernel
size of 9, stride of 1, and groups=740, allowing
each channel to be processed independently. This
layer consumes 599.4KMACs (0.050% Params,
0.036% MACs) and captures channel-specific
features over a larger receptive field.

The attention module has a total of 283.42k parameters
and contributes 22.9MMACs (1.757% Params, 1.368%
MACs). By combining separable convolutions, non-linear
activation, and depthwise operations, it efficiently extracts
both local and global features from sequential data.

2.2.2. Value Module (v)

The value module processes the input in parallel to the atten-
tion module and comprises:

• ConstantPad1d: Padding ensures dimensional consis-
tency without adding computational cost (0% Params,
0% MACs).

• Conv1d: A convolutional layer with 275.28k param-
eters configured identically to the first Conv1d layer
in the attention module (740 input and output chan-
nels, kernel size 1, stride 1, groups=2). It contributes
22.24MMACs, or 1.706% Params, 1.329% MACs.

The combined output of the attention module and the
value module is connected by a residual connection, ensur-
ing stable training and strong information flow.

2.2.3. Projection Layer (proj)

The output projection layer refines features by projecting the
channels back to the hidden dimensionality. This layer in-
cludes:

• ConstantPad1d: Padding is applied to preserve spatial
consistency.

• Conv1d: Another convolutional layer with 275.28k
parameters identical to those in the value module. It
contributes 22.24MMACs (1.706% Params, 1.329%
MACs).

2.3. Output Projection Head (out head)

The final component of the encoder processes the output of
the eight sequential blocks to produce the desired feature
representation. The output projection head has 189.95k pa-
rameters and contributes 15.37MMACs (1.177% Params,
0.918% MACs). It consists of:

• ConstantPad1d: Padding ensures dimensional align-
ment.

• Conv1d: A convolutional layer with 740 input chan-
nels, projecting down to 256 output channels. It uses
a kernel size of 1 and stride of 1. This operation re-
duces dimensionality while retaining relevant features
for downstream tasks.

2.4. Overall Design and Applications

The encoder module leverages channel normalization, sep-
arable convolutions, depthwise operations, and residual
connections to achieve efficient and expressive feature ex-
traction. Its modular design makes it suitable for sequential
data tasks such as audio signal processing. By balancing
computational complexity (662.66MMACs) and parameter

2025 LRAC Challenge – System Description Report 28



count (8.2M), the encoder strikes an excellent trade-off be-
tween performance and resource efficiency.

3. QUANTIZATION

As previously mentioned, both the 1kbps and 6kbps config-
urations share a base codebook consisting of 5,792 entries,
which is quantized by a vector quantizer (FactorizedVec-
torQuantize) [6] with a computational complexity of 381.07
MMacs.

The 6kbps configuration introduces additional codebooks,
which are quantized in two groups using another quantizer
called SimVQ1D[7] with a computational complexity of ap-
proximately 1.2 MMacs.

The encoder always produces encodings at 6kbps, while
in the training phase, the quantizer randomly drops the out-
puts from the second codebook. During inference, the de-
coder reconstructs the waveform using the specified codebook
configuration.

4. DECODER

The decoder shares the same fundamental building blocks as
the encoder but adopts two distinct configurations depending
on the training stage. During stage 1, the hidden dimension
is set to 600 to improve the performance of codebook train-
ing. In stage 2 and during inference, the hidden dimension
is reduced to 530 to prioritize computational efficiency while
maintaining strong performance.

To further address computational complexity constraints,
the block dimensionality in the decoder is fixed at 530, and
the number of blocks is limited to 6. This optimization re-
duces the computational complexity of the decoder to 296.96
MMACs, meeting the competition’s requirements while en-
suring robust performance.

Apart from the hidden dimension and the number of
blocks, the input dimension of the decoder is set to 256,
which differs from that of the encoder.

For waveform reconstruction, the decoder incorporates
multiple head modules to recover both the magnitude and
phase components of the frequency-domain signal. These
include:

• Mag Head: Outputs the magnitude of the STFT.

• R Head and I Head: Jointly output the phase informa-
tion of the STFT.

Each head (Mag Head, R Head, and I Head) consists of a
ConstantPad1d layer followed by a Conv1d layer. These
modules share the same structure, with a 530-channel input,
a 601-channel output, and a kernel size and stride of 1.

The final step in the decoder is the ISTFT (Inverse Short-
Time Fourier Transform) layer, which reconstructs the time-
domain signal from its frequency-domain representation.

This layer introduces no additional trainable parameters or
computational overhead, ensuring an efficient mapping back
to the audio waveform.

5. TRAINING SETUP

We trained the model using data provided by the LRAC chal-
lenge requirements, with augmentation applied on the fly
during training. The augmentation module simulates audio
degradation by adding noise, reverberation, and other arti-
facts. It generates corresponding pairs of noisy and clean
audio for training purposes.

The training process consists of two stages. In the first
stage, the model is trained using clean speech as both input
and output. During this phase, we aim to simultaneously learn
the codebooks for both 1kbps and 6kbps configurations. In
the second stage, the quantization module is frozen, and the
encoder and decoder are retrained using noisy speech as the
input and clean speech as the output.

This approach allows the codebooks to constrain the en-
coder to focus exclusively on encoding clean speech. On one
hand, the denoising functionality is embedded within the en-
coder, which is a larger component of the model. On the
other hand, the codebooks are specifically designed to sup-
port clean speech transmission, making them highly effective
for this task.

Several loss functions are employed during the training
process, including the multi-resolution STFT loss, multi-
resolution Mel loss, and phase loss. Additionally, for adver-
sarial loss, we utilize the Multi-Period Discriminator (MPD),
Multi-Resolution STFT Discriminator (MRSTFTD), and
Multi-Band Discriminator (MBD) to improve audio qual-
ity and realism.

2025 LRAC Challenge – System Description Report 29



6. REFERENCES

[1] Ilya Loshchilov and Frank Hutter, “Decoupled weight
decay regularization,” in International Conference on
Learning Representations, 2019.

[2] Rithesh Kumar, Prem Seetharaman, Alejandro Luebs,
Ishaan Kumar, and Kundan Kumar, “High-fidelity audio
compression with improved rvqgan,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[3] Andong Li, Tong Lei, Zhihang Sun, Rilin Chen, Erwei
Yin, Xiaodong Li, and Chengshi Zheng, “Learning neu-
ral vocoder from range-null space decomposition,” arXiv
preprint arXiv:2507.20731, 2025.

[4] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan
Skoglund, and Marco Tagliasacchi, “Soundstream: An
end-to-end neural audio codec,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 30, pp.
495–507, 2021.

[5] Ming-Ming Cheng Qibin Hou, Cheng-Ze Lu and Jiashi
Feng, “Conv2former: A simple transformer-style con-
vnet for visual recognition,” in IEEE Trans. Pattern Anal.
Mach. Intell., vol. 46, no. 12, pp. 8274– 8283, 2024.

[6] Chi-Min Chan Xinsheng Wang Xu Tan Jiahe Lei Yi Peng
Haohe Liu Yizhu Jin Zheqi Dai Hongzhan Lin Jianyi
Chen Xingjian Du Liumeng Xue Yunlin Chen Zhifei Li
Lei Xie Qiuqiang Kong Yike Guo Wei Xue Zhen Ye,
Xinfa Zhu, “Llasa: Scaling train-time and inference-
time compute for llama-based speech synthesis,” arXiv
preprint arXiv:2502.04128, 2025.

[7] Yifei Xin Zhihua Xia Linli Xu Yongxin Zhu, Bocheng Li,
“Addressing representation collapse in vector quan-
tized models with one linear layer,” arXiv preprint
arXiv:2411.02038, 2025.

2025 LRAC Challenge – System Description Report 30


