ENHANCE-NANOCODEC: ENHANCEMENT NEURALAUDIO CODEC
FOR THE LRAC 2025 CHALLENGE TRACK 2

Lingling Dai**, Zhe Han', Andong Li**, Yiging Guo', Linping Xu,
Hua Gao', Xiaodong Li**, Chengshi Zheng**

* Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
1ByteDance, China
*University of Chinese Academy of Sciences, Beijing, China

ABSTRACT

This paper presents Enhance-NanoCodec, which is designed to per-
form codec transmission in conjunction with simultaneous denoising
and dereverberation under the constraints of low complexity, low
bitrate and real-time processing. Our architecture operates in the
time-frequency (T-F) domain, where we discard the phase and only
encode the magnitude features on the encoder side—both the mag-
nitude and phase are estimated on the receiver side. To scientifically
allocate the complexity ratio of the model between the encoder and
decoder, and to utilize the codebook more efficiently, we designed
a multi-stage training scheme, which excellently accomplishes the
joint task of speech enhancement and coding. In addition, we pro-
pose an efficient convolution-style attention block as the core model-
ing unit. Enhance-NanoCodec achieves a total latency of 50 ms and
a computational complexity of 1.86 GFlops (0.58 for the decoder),
and is submitted to the LRAC Challenge Track 2.

Index Terms— Neural audio codec, speech enhancement, low-
complexity, low bitrate, real-time

1. INTRODUCTION

Audio codec technologies are foundational to on-demand streaming.
End-to-end Neural audio codecs (NACs) with learnable encoders,
including SoundStream [1]] and DAC [2], have attracted significant
research interest. They stand out for high-quality audio at very low
bitrates, a performance target conventional audio coding struggles to
achieve. However, several critical issues persist as key focus areas
for advancing the practical deployment of NACs in real-world trans-
mission scenarios, including high computational cost, strict causal-
ity constraints, non-negligible algorithmic delay, and the ongoing
challenge of ensuring clear speech transmission amid complex back-
ground noise.

The objective of Track 2 in the LRAC 2025 Challenge [T_] is to
achieve the integration of speech enhancement and coding under
the joint constraints of low latency, low computational complexity,
real-time processing, and high quality. To this end, we propose the
Enhance-NanoCodec architecture. This system is engineered to ful-
fill the challenge constraints while maintaining robust performance,
and its capabilities are fully optimized through a multi-stage training
scheme for high-quality speech enhancement and coding.

First, Enhance-NanoCodec operates in the time-frequency (T-F)
domain for high-fidelity spectral detail reconstruction. As target cod-
ing or estimation in the time domain becomes especially challenging
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when computational resources are limited, we disregard the phase
and utilize only the magnitude for feature encoding, with both mag-
nitude and phase reconstructed in the decoder, leveraging a Fourier
prior to ease the learning process. Second, we adopt a convolution-
style attention block for spectral modeling. It uses large convolution
kernels to generate the attention distribution, effectively aggregating
contextual information. Third, joint magnitude and phase estimation
under limited resources remains an open challenge. Following [3]],
we use an omnidirectional phase loss for phase optimization, which
captures differential relations between center and neighboring phase
bins. We further extend this to the spectrum’s real and imaginary
(RI) parts, proposing an omnidirectional RI loss. Finally, inspired
by [4], we design a multi-stage training scheme to further enhance
the codebook’s efficiency in leveraging clean speech data within
Track 2, while optimizing task allocation between the encoder and
decoder. This comprehensive training strategy enables the model to
accomplish the dual objectives of high-quality speech enhancement
and reconstruction, all while fully complying with the challenge re-
quirements.

2. METHOD ILLUSTRATIONS

2.1. Overall Architecture

The overall structure of the proposed Enhance-NanoCodec is pre-
sented in Fig. a). Given the input waveform 2 € R”, we first
transform it into the time-frequency (T-F) domain using the short-
time Fourier transform (STFT), obtaining the complex spectrogram
X € C"*T where F and T denote the number of frequency bins
and time frames, respectively. For the encoder input, we drop the
phase counterpart and use the normalized magnitude spectrogram
|X| € RF*T along with the spectral energy, which is extracted via
the energy-content decoupling (ECD) layer. Then the encoder ex-
tracts the frequency information and obtains highly compressed hid-
den representations, which are matched with a sequence of discrete
codes C' € RNe*P*T through residual vector quantization (RVQ),
where N, is the codebook number and D is the feature dimension.
The decoder takes the quantized codes as input and reconstructs both
the magnitude spectrogram and the phase spectrogram. Finally, we
recover the enhanced waveform & € R’ by applying the inverse
STFT (iSTFT). Both encoder and decoder share the same modeling
unit, which is composed of a stack of Large Kernel Convolution-
Style Attention Block (LKCAB) as shown in Fig. [[[b). The pro-
posed LKCAB uses large convolution kernels to generate the atten-
tion distribution, effectively aggregating contextual information.
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(a) Overall Diagram of the NanoCodec
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Fig. 1. (a) Overall structure of the proposed NanoCodec; (b) Internal structure of the adopted LKCAB.

2.2. Multi-stage Training Scheme

In Track 2 of the LRAC 2025 Challenge, the computational budget
is intentionally biased toward the transmitter side, with a substan-
tially higher complexity allocation compared to the receiver. Since
the track specifically focuses on enhanced speech, we introduce a
multi-stage training strategy aimed at improving the codebook’s ef-
ficiency in representing clean speech while achieving a more bal-
anced computational distribution between the encoder and decoder.
The detailed training procedure is elaborated as follows.

2.2.1. Stage 1: Training codebook of clean speech

To ensure that all information in the codebook is dedicated to trans-
mitting valid clean speech, only clean speech is used during the train-
ing process. It is important to note that the codebook for both 1 kbps
and 6 kbps were finalized in this stage. To better guide the encoder’s
performance and avoid being constrained by the decoding bottleneck
of the decoder, a decoder with a complexity exceeding that required
by the challenge is employed for speech encoding during this stage.

2.2.2. Stage 2: Training a speech-enhancement encoder

In Stage 2, an encoder with noise reduction capability is trained. At
this stage, various speech augmentations were applied to the data,
including the addition of noise and reverberation, as well as other
augmentations mentioned in 3.3} During this phase, the codebook
and decoder learned in Stage 1 were fixed, with only the encoder
undergoing training.

2.2.3. Stage 3: Training a low complexity decoder

In Stage 3, the objective was to train a decoder that meets the compu-
tational complexity requirements and is compatible with the encoder
and codebook obtained in the previous two stages. During this stage,
both the codebook and the encoder were fixed.

3. MISCELLANEOUS CONFIGURATIONS

3.1. Network Setups

For both STFT and iSTFT, the window length is set to 50 ms with
a hop size of 12.5 ms. No auxiliary look-ahead nor algorithmic de-
lay is introduced, resulting in a total system latency of 50 ms. The
number of LKCABs used in the encoder is set to 12 with a hidden
dimension of 600, while the decoder uses 10 LKCABs with a hidden
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Module Para. M) Complexity (MFlops)
Encoder 7.84 1266.66
Quantizer 0.08 16.32
Decoder 3.59 578.63

Table 1. Model parameter and computational complexity.

dimension of 420. The number of codebooks is set to 1 with a code-
book size of 5792 for the 1 kbps transmission rate. For the 6 kbps
transmission rate, we reuse the codebook from the 1 kbps setup. Ad-
ditionally, we introduce the grouped RVQ, where the codebooks are
divided into two groups, with each group containing 3 codebooks
and a codebook size of 1024. The theoretical transmission rate is
1.00 kbps for 1 kbps transmission and 5.80 kbps for 6 kbps transmis-
sion. The total trainable parameter count for Enhance-NanoCodec is
11.51 M, and the total computational complexity is 1.86 GFlops,
where the decoder accounts for 0.58 GFlops. The detailed model
parameters and computational complexity of each module are pre-
sented in Table[Tl

3.2. Loss Setups

We use both reconstruction and adversarial losses during Stage 1 and
Stage 2 training. The reconstruction loss consists of multi-resolution
STFT loss, multi-resolution Mel loss, as well as our proposed omni-
directional phase loss, which captures differential relations between
center and neighboring phase bins. For adversarial training, we
employ a multi-period discriminator (MPD), multi-resolution STFT
discriminator (MRSTFTD), and multi-band discriminator (MBD),
along with a feature matching loss. In Stage 3, to further improve
the performance of the low-complexity decoder, we additionally
incorporate PESQ loss, UTMOS loss, as well as our proposed om-
nidirectional RI loss for optimization, where the former two provide
perceptual supervision and the latter enables finer joint magnitude-
and-phase reconstruction.

3.3. Dataset Setups

The training corpus employed in this study is sourced from the
LRAC 2025 Challenge. For speech, we use the speech clips
from LibriSpeech [5], LibriVox [6], VCTK [7], EARS [8]] and
Multilingual Librispeech [9]. For noise set, we include Au-
dioset [[10], Freesound [11]](from the DNS5 challengeEI), FMA [12],
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WHAM! [13] and FSDS50K [14]. For reverberation generation, we
include the room impulse responses (RIRs) from Open SLR 2 and
Motus [15]. Further refinement was performed by excluding audio
segments that were excessively short or exhibited abnormally low
energy, thereby ensuring the quality and consistency of the training
samples.

During model training after stage 1, noisy and reverberant sig-
nals were synthesized on-the-fly via random sampling from the
speech, RIR, and noise datasets. Specifically, under noisy speech
conditions, the signal-to-noise ratio (SNR) was set to range from -5
dB to 20 dB. To enhance model generalization, we applied additional
data augmentation to 20% of the training corpus, implementing spe-
cific techniques including bandwidth limitation, amplitude clipping,
and packet loss concealment (PLC).

3.4. Evaluation Metrics

In this study, model performance is initially evaluated using both
the non-intrusive metric UTMOS [16] and the intrusive metric
PESQ [17]], which facilitated rapid evaluation and informed iterative
adjustments to the model architecture and training procedures. For
the final selection of the model, comprehensive human listening
tests were conducted to ensure robust perceptual quality.

3.5. Training Settings

We optimized the model using AdamW optimizer [18] with its de-
fault betas (0.8, 0.99) and an initial learning rate of 0.0002. The
learning rate is scheduled using an ExponentialLR scheduler with a
gamma of 0.999998 per epoch. Additionally, we set the batch size to
16 and the duration of each sample to 5 seconds. For each training
stage, the number of training steps was set to a range of 500,000 to
1,000,000, depending on the convergence of the evaluation metrics.
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