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ABSTRACT

Speech codec is a key challenge in hands-free commu-
nication systems, where on-device deployment requires
real-time processing under strict constraints on bitrate
and computational complexity. Meanwhile, real-world
acoustic conditions demand integrated speech enhance-
ment (SE). In this paper, we propose a novel Progressive
Refinement (PR) strategy to build a high-performance
codec for joint speech coding and enhancement. With
this strategy, we introduce PR-Vocodec, a low-latency,
high-fidelity, and low-bitrate codec, which can per-
form noise reduction and dereverberation simultaneously
with low computational overhead. Experimental results
demonstrate that the PR-Vocodec delivers superior per-
formance across multiple evaluation metrics.

Index Terms— progressive refinement, audio neural
codec, speech enhancement.

1. INTRODUCTION

The 2025 Low-Resource Audio Codec (LRAC) Challenge
focuses on codecs with low computational complexity,
low latency, and low transmission bandwidth, as well as
multi-task codecs coupled with front-end enhancement
tasks. In this paper, we introduce PR-~Vocodec, our sys-
tem submitted to the Challenge. The system is built
upon the Vocos architecture [I] and employs a six-layer
Residual Vector Quantizer (RVQ) [2] in the quantiza-
tion module, supporting both 1 kbps and 6 kbps bi-
trates. The training follows a three-stage progressive re-
finement (PR) strategy. Stage 1 focuses on constructing
a high-fidelity teacher model. Stages 2 and 3 progres-
sively train the student model, enhancing its noise sup-
pression and dereverberation capabilities. This progres-
sive refinement framework not only preserves the qual-
ity of the codebooks but also significantly improves the
speech enhancement performance and generalization of
the student model under low-bitrate constraints.
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2. PROPOSED METHOD

2.1. Codec architecture

As illustrated in Fig[l] we design the backbone architec-
ture based on the Vocos [I] framework and employ it as
the decoder. The decoder consists of six 1D ConvNeXt
[3] blocks with a hidden dimension of 558, followed by a
post-processing network comprising four ResNet blocks
and a causal self-attention module [4]. The encoder is
constructed as a mirror-symmetric counterpart of the de-
coder, performing feature extraction of the input speech
at the transmitting end through a reversed information
flow. Since the encoding stage is coupled with the SE
task, we adopt an asymmetric parameter configuration to
enhance the encoder’s feature extraction and multi-task
processing capabilities. Specifically, the encoder consists
of twelve 1D ConvNeXt blocks with the hidden dimen-
sion increased to 1096. In addition, we employ an RVQ
module to encode the embeddings extracted by the en-
coder. The RVQ consists of six quantization layers, each
with a codebook size of 1024.

2.2. PR training strategy

The PR strategy enables the model to achieve high-
fidelity audio coding while simultaneously performing
high-quality speech enhancement, including noise sup-
pression and dereverberation. As illustrated in Fig. [2]
the training process consists of three progressive stages.

In Stage 1, the model follows the standard audio
codec training paradigm to obtain a low-bitrate, high-
fidelity codec, which serves as the teacher model. The
training process adopts a generative adversarial net-
work (GAN) framework, where a multi-scale short-time
Fourier transform discriminator (MS-STFTD) [5] is em-
ployed to impose multi-scale time—frequency constraints
on the reconstructed audio, thereby enhancing the accu-
racy in frequency band reconstruction.

In Stage 2, the encoder of the student model is trained
from scratch to perform joint coding and enhancement.
Specifically, the clean speech is fed into the encoder of
the teacher model to generate target embeddings, while
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Fig. 2. The Schematic of the PR training strategy. The
red blocks are updated during the training stage, while
the white blocks are frozen.

the noisy and reverberant speech is passed through the
student encoder. During training, the two sets of embed-
dings are aligned, guiding the student encoder to produce
representations that closely match those of the teacher
model when processing clean inputs. This alignment ef-
fectively implements noise and reverberation suppression
within the encoder module. Crucially, the codebook re-
mains frozen throughout this stage, ensuring that the
decoder’s input space remains consistent with that of
the teacher model.

Stage 3 is the dual process of Stage 2, aiming to en-
hance the robustness of the student decoder and thereby
improve the system’s generalization to noisy or rever-
berant inputs. During this stage, the encoders and RVQ
modules of both teacher and student models are frozen.
Clean and noisy speech pairs are processed in parallel,
aligning the decoder outputs and the reconstructed wave-
forms to promote consistent decoding behavior. This
process ensures the output of the student decoder closely
approximates the output of the teacher decoder for clean
speech, enhancing the robustness against variations in
encoder output. Furthermore, adversarial training is in-
corporated in this stage by employing the discriminator
pre-trained during Stage 1 to refine the decoder outputs
of the student model. To balance the training progress
between the decoder and the discriminator, we update
the decoder five times for each discriminator update to
ensure balanced convergence and maintain stable adver-
sarial training.
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An overview of the proposed PR-Vocodec backbone.

2.3. Loss function

The training of the teacher codec utilizes a composite
loss function within a GAN framework. The total gener-
ator loss, Lgeneraror, is a weighted sum of multiple com-
ponents: the multi-scale mel-spectrogram reconstruction
loss Lyec [6], the generator adversarial loss Lg, the fea-
ture matching loss Ly.q; applied to the discriminator’s
features, the codebook loss Lcoge, and the commitment
loss L.. It is formulated as:

Lyec = IM(x) = M (D); (1)
Lg=1-D@)I3 (2)
Liear =2 Y ||D'(x) = D'(®)]), (3)
1
Lgenerator =ArecLrec + /1ng + Ateat Lfeat
+ Acode ”Sg[ze] - ek”g +4c ”ze - Sg[ek] ”%
Leode L.

(4)

In the above equations, x and x denote the target and
reconstructed speech, respectively, M(-) is the mel-
spectrogram transform, D(-) is the discriminator output,
D'(-) represents the feature map of the I-th discrimina-
tor layer, z. is the quantizer output, and e; is the
codebook vector. sg[-] denotes the stop-gradient oper-
ation, indicating that its gradients are detached from
the computation graph and do not participate in back-
propagation. The multi-scale mel-spectrogram loss Lyec
is computed using window length samples [32, 64, 128,
256, 512, 1024, 2048], with the hop length fixed at 1/4 of
each window length. Each scale uses different mel bins
of [5, 10, 20, 40, 80, 160, 320]. Loss weights are set as:
Arec = 15, Ag = 2, Afeat = 1, Adcode = 1, Ac = 0.25. The
discriminator is trained with adversarial loss L4, which
is formulated as:

Lqg=1-D@)3+1D®)I3 (5)

In Stage 2, the loss function Lpgr_encoder coOmbines
the mean squared error (MSE) and cosine distance be-
tween the teacher and student embeddings, weighted by
1.0 and 0.2, respectively.
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Table 1. Objective Performance Comparison on the Open Test Set.

Bitrate Model

Condition ScoreQ-ref UTMOS Sheet-SSQA PESQ Audiobox AE-CE

Clean 0.435 2.972 3.548 2.126 5.381

Baseline  Noisy 0.753 2.562 3.122 1.723 4.754

Reverb 0.913 1.803 3.273 1.295 4.381

Clean 0.164 3.790 3.917 3.215 5.786

6kbps  gtage 2 Noisy 0.348 3.594 3.706 2.498 5.540
Reverb 0.364 3.517 3.883 2.092 5.597

Clean 0.158 3.785 3.929 3.244 5.795

Stage 3 Noisy 0.317 3.613 3.755 2.444 5.592

Reverb 0.340 3.560 3.890 2.116 5.659

Clean 1.008 1.371 2.079 1.207 4.163

Baseline Noisy 1.150 1.351 2.520 1.180 3.918

Reverb 1.117 1.323 3.065 1.153 3.723

Clean 0.386 3.306 3.609 1.959 5.470

Lkbps  Gtage 2  Noisy 0.470 3.236 3.537 1.753 5.370
Reverb 0.466 3.202 3.666 1.657 5.392

Clean 0.364 3.305 3.648 1.991 5.490

Stage 3 Noisy 0.463 3.242 3.541 1.786 5.383

Reverb 0.465 3.211 3.626 1.674 5.301

In Stage 3, the outputs of the decoder’s final hidden
layer are optimized using the same loss function as in
Stage 2, denoted as Lpr-_decoder- Meanwhile, the de-
coded speech is trained with the same loss formulation
as in Stage 1, denoted as Lgeneraror- The overall training
objective for the decoder at this stage is therefore given
by:

thage—S = LPR—decoder + Lgenerator' (6)

3. EXPERIMENTAL SETUP

3.1. Training data preparation

In Stage 1, the teacher model is trained on the EARS,
VCTK, Common Voice, LibriTTS, Multilingual Lib-
riSpeech, and DNS Challenge 5 datasets. All speech
data are resampled to 24 kHz. In Stages 2 and 3, we
extend the student model’s capability in noise suppres-
sion and dereverberation by constructing an additional
noise dataset derived from VCTK, WHAM, FSD50K,
and FMA, covering a diverse range of noise types. Dur-
ing training, each clean speech sample is mixed with
background noise with a probability of 80%, where
the signal-to-noise ratio (SNR) is uniformly sampled
between -5 dB and 30 dB. To simulate reverberant con-
ditions, room impulse responses (RIRs) from the Motus
dataset are applied, with each sample augmented with
reverberation at a probability of 50%. All training data
are processed following the cleaning and preprocessing
procedures specified in the official baselin(ﬂ

Thttps://github.com/cisco-open/lrac_data_generation
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3.2. Implementation Details

In Stage 1, the teacher model is trained for 1000 epochs
with a batch size of 192, using the AdamW optimizer
with a cosine annealing learning rate scheduler. In Stage
2, the student encoder is trained to replicate the teacher
model’s embeddings. This stage runs for 500 epochs with
a batch size of 40, optimized by RAdam with an expo-
nential decay scheduler. In Stage 3, the student decoder
is trained for 200 epochs with a batch size of 192 and
optimized by the AdamW optimizer with an exponential
learning rate decay scheduler.

3.3. Computational complexity and latency

The computational complexity of the teacher model
is 349.29M multiply—accumulate operations per second
(MACs/s)? (with the decoder accounting for 281.57M
MACs/s) and the model contains 3.47M parameters.
The overall student model comprises 12.37M parame-
ters and operates with a computational complexity of
1.25G MACs/s (with the decoder accounting for 281.29M
MACs)

The teacher model incurs an algorithmic latency of
30 ms due to the 720-point STFT. In contrast, the stu-
dent model has a total latency of 50 ms, comprising the
same 30 ms algorithmic latency and an additional 20 ms
buffering latency introduced in the encoder.

2The computational complexity is calculated by ptflops: https:
//github.com/tel-0s/ptflops.
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4. RESULTS

Evaluation on the open test set is conducted using the
official metrics provided by the challenge, which contain
five objective metrics: ScoreQ_ref [7], UTMOS [g], Sheet-

SSQA [9], PESQ [10], and Audiobox Aesthetics_CE [I 1]E|

Experimental results are summarized in Table The
results show that PR-Vocodec significantly outperforms
the baseline across all scenarios at both bitrates, partic-
ularly demonstrating strong robustness and generaliza-
tion for reverberant data. Furthermore, the comparison
between Stage 2 and Stage 3 shows that the decoder
retraining enhances the model’s adaptability and con-
sistency, thereby validating the effectiveness of the PR
training strategy in achieving high-fidelity speech coding
with strong enhancement capability.

5. CONCLUSION

This paper introduces our proposed PR training strategy
designed for joint speech coding and enhancement tasks,
and our PR-Vocodec model submitted to the LRAC
Challenge. The proposed approach achieves competi-
tive performance in the LRAC challenge, surpassing the
baseline by a large margin across different bitrates and
input conditions.
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