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ABSTRACT

End-to-end speech codecs enable efficient low-bitrate communi-
cation, but most existing approaches lack integrated enhancement,
which limits performance under noisy and reverberant conditions.
While recent work has attempted to combine speech enhancement
with neural codecs, these methods are often too complex to be
practical in low-resource scenarios. In this paper, we present a
lightweight speech enhancement codec specifically designed for
resource-constrained settings. The proposed system adopts a three-
stage training strategy that first establishes strong compression
capability and then progressively improves robustness to noise and
reverberation. Experimental results demonstrate that our model
achieves superior performance in challenging noisy and reverber-
ant environments while meeting strict constraints on computational
complexity, latency, and bitrate.

Index Terms— low complexity, speech codec, speech enhance-
ment

1. INTRODUCTION

Speech codecs compress speech signals while preserving perceptual
quality [1]. Recent end-to-end models such as SoundStream [2],
DAC [3], and L3AC [4] employ encoder–decoder architectures with
quantization modules like RVQ or FSQ [5], achieving high-quality
reconstruction. However, as most are trained only on clean speech,
they lack robustness to real-world noise, making integrated enhance-
ment essential for practical deployment.

Joint enhancement–compression has thus emerged as an active
research direction. Early approaches, such as SoundStream and
SEStream [6], were trained directly on noisy–clean pairs. More
recent methods have explored the use of domain-specific code-
books [7], masked generative models [8, 9], or latent space regres-
sion within pretrained codecs [10, 11]. While these approaches
have demonstrated promising performance, they often come with
high computational complexity, which hinders their applicability in
real-time, resource-constrained scenarios.

To address these limitations, we propose a Lightweight Codec
for Joint speech compression and enhancement (LJCodec), an end-
to-end framework designed to perform both tasks within a unified
system. The main contributions of this work are summarized as fol-
lows.

• We propose LJCodec, a Lightweight Codec that jointly per-
forms speech compression and enhancement.

• We propose a three-stage training strategy that strengthens
noise robustness by training on clean speech, aligning en-
coder representations from noisy to clean embeddings, and
adapting the decoder with the fixed encoder.

2. METHOD

2.1. Model Architecture

The entire model follows the same structure as the baseline. The
encoder consists of five EncoderBlocks, each composed of several
residual convolutional blocks followed by a strided convolution for
downsampling. The downsampling factors across the five blocks are
2, 2, 3, 4, and 5, respectively. The quantizer employs Residual
Vector Quantization (RVQ), where multiple codebooks are cascaded
such that each deeper codebook encodes the residual of the previous
one. The decoder mirrors the encoder architecture and performs
upsampling using transposed convolutions with stride equal to the
kernel size, thereby reducing the complexity introduced by the up-
sampling operations. To reduce the computational burden at the re-
ceiver side and satisfy LRAC requirements, the convolutional chan-
nel width in the decoder is set to about 3/4 of that in the encoder.

Fig. 1: Proposed stage-wise training strategy.
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2.2. Stage-wise Training

To improve robustness against noisy speech, we employ a three-
stage training strategy (Fig. 1), starting with clean speech training
and followed by independent fine-tuning of the encoder and decoder.

Stage 1. Base Model Training on Clean Speech. In the first
stage, we train the codec model exclusively on clean speech using
a combination of reconstruction loss, feature loss, commitment loss,
and adversarial loss, following the same loss setup and adversarial
training strategy as EnCodec.

Let x be the speech to be encoded, and x̂ be the speech generated
by the decoder. Reconstruction loss is used to measure the difference
between x̂ and x in both the time domain and the time-frequency
domain. The loss in the time and time-frequency domains can be
expressed as

ℓt = ||x− x̂||22, (1)

and

ℓf =
∑

s∈{26,...,211}

∑
t

||Ss
t (x)− Ss

t (x̂)||1+

|| logSs
t (x)− logSs

t (x̂)||2, (2)

respectively, where Ss
t represents the t-th frame in the 64-bin mel-

spectrogram with window length s and hop length s/4. The recon-
struction loss ℓrec is the sum of the time domain loss and the time-
frequency domain loss:

ℓrec = 100ℓt(x, x̂) + ℓf (x, x̂). (3)

Feature loss ℓfeat measures the difference between x and x̂ in
the feature space defined by the discriminators. It is calculated by
taking the mean absolute difference between the inner layer output
feature maps of the discriminators for the generated speech and the
corresponding target speech.

ℓfeat = Ex

 1

KL

∑
k,l

|Dk,l(x)−Dk,l(x̂)|

 , (4)

where L is the number of intermediate layers, and Dk,l (l ∈
{1, . . . , L}) denotes the output of the l-th layer of discriminator
k.

Quantizer commitment loss ℓq describes the difference between
the input and output of the quantizer. It is used to reduce the discrep-
ancy between the quantizer’s embedding space and the encoder’s
output, which can be expressed by:

ℓq =

C∑
c=1

||zc − qc (zc) ||22, (5)

where qc represents the c-th vector quantizer.
In adversarial training, the following two adversarial losses are

used to optimize the codec and the discriminators. The adversarial
loss ℓadv g for codec is

ℓadv g = Ex

[
(1−D(x̂))2

]
, (6)

while ℓadv d for discriminators is

ℓadv d =Ex

[
(1−D(x))2 + (1 +D(x̂))2

]
. (7)

The total loss for the codec is defined as follows:

ℓg = λrecℓrec + λfeatℓfeat + λqℓq + λadv gℓadv g, (8)

Table 1: Objective evaluation results at 1 kbps and 6 kbps under
clean, noisy, and reverberant conditions.

ScoreQ UTMOS PESQ

1 kbps
clean 0.39 3.99 1.58
noisy 0.49 3.82 1.44
reverb 0.52 3.61 1.27

6 kbps
clean 0.27 4.17 2.21
noisy 0.45 3.96 1.77
reverb 0.5 3.63 1.38

Table 2: Computational complexity (MFLOPS) and latency (ms) of
different modules.

Component Compute Latency

Encoder 1946 20
Quantizer 48 0
Decoder 594 20
Buffering latency – 10

Total 2588 50

and the discriminator loss ℓd is

ℓd = λadv dℓadv d. (9)

where λ are constant weights used to balance each component.
In our experiments, we trained the model with weights λrec =

λfeat = λadv g = λadv d = 1, and λq = 1000 .
Stage 2. Encoder Alignment Fine-tuning. Inspired by Sound-

Stream, we argue that the enhancement task should be performed
before quantization, on the encoder side, to minimize the impact of
noisy latent representations on both the quantizer and decoder. Un-
like NoiseRobustVRVQ (NRVRVQ) [11], which optimizes the en-
tire model on noisy speech, we perform alignment fine-tuning only
on the encoder.

Specifically, we duplicate all modules before the quantizer into
a trainable encoder, denoted as EN , and a frozen encoder, denoted
as EC . Noisy speech xn is fed into EN , while clean speech xc is fed
into EC . The output of EC serves as the supervision target for EN .
The EN is optimized with a mean squared error loss:

ℓa = E
[
(EN (xn)− EC(xc))

2] . (10)

No additional losses (e.g., reconstruction loss) are introduced, as this
design forces the encoder to rapidly adapt to the speech enhancement
task on top of its established compression capability.

Stage 3. Decoder Adaptive Fine-tuning. Although the latent
distribution after Stage 2 is close to that of Stage 1, slight mismatches
remain and lead to reconstruction artifacts. We fine-tune both the
quantizer and the decoder to better adapt to these new representa-
tions. The encoder EN is frozen, while the quantizer Q, decoder
DN , and the discriminators are optimized using the same loss func-
tions as in Stage 1. This strategy improves the overall audio quality
with minimal overhead.

3. EXPERIMENT

3.1. Datasets

We trained our codec using the datasets specified by LRAC. In Stage
1, the model was trained on clean speech drawn from LibriVox
data from the DNS5 Challenge [12], LibriTTS[13], VCTK[14],
EARS[15], CommonVoice[16], and Multilingual LibriSpeech[17].
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In Stage 2 and Stage 3, we constructed degraded speech by mixing
clean utterances with noise and reverberation. The noise sources
included Audioset[18] and FreeSound[19] noises from the DNS5
Challenge, WHAM! noise[20], speech-filtered FSD50K[21], and
Free Music Archive[22]. Noisy speech was synthesized by mixing
clean utterances with these noises at signal-to-noise ratios (SNR)
uniformly sampled between −5 dB and 30 dB. Reverberation was
simulated using RIR datasets from OpenSLR28, the DNS5 Chal-
lenge, and Motus [23]. All corpora were downsampled to 24 kHz
for both training and evaluation. For benchmarking, we used the
official LRAC validation and test sets to ensure fair and consistent
comparisons.

3.2. Training and Evaluation Settings

Training Settings: The entire model is trained on a single RTX
4090 GPU with a batch size of 32. The number of iterations for
Stage 1, Stage 2, and Stage 3 are set to 150k, 50k, and 150k, respec-
tively.

Evaluation Metrics: For preliminary offline testing during
the development stage, we adopt PESQ[24], UTMOS[25], and
ScoreQ[26] as objective quality metrics. For the official bench-
mark evaluation, we rely on the toolkit provided by the organiz-
ers, which reports a more comprehensive set of metrics, includ-
ing sheet ssqa [27], scoreq ref, audiobox AE CE [28],
utmos, and pesq. For model efficiency, we report both the com-
putational complexity and the latency of the proposed codec.

3.3. Speech Quality Metrics

Table 1 summarizes the objective evaluation results. On clean speech
compression, LJCodec outperforms the baseline at both 1 kbps and
6 kbps. For degraded speech with additive noise and reverberation,
LJCodec also demonstrates consistent improvements over the base-
line.

3.4. Model Efficiency

Table 2 presents the computational complexity and latency of our
model. The overall complexity is below 2600 MFLOPS, with the
receive-side (decoder) complexity under 600 MFLOPS. The end-to-
end latency is less than 50 ms, fully meeting the challenge require-
ments.

4. CONCLUSIONS

We presented LJCodec, a low-complexity end-to-end codec that
jointly performs speech compression and enhancement. Through
a three-stage training strategy, the model achieves robustness to
noise and reverberation while maintaining a low bitrate, low latency
(<50 ms), and low computational complexity (<2600 MFLOPS).
Experiments on the LRAC benchmark show consistent improve-
ments over the baseline, demonstrating the practicality of LJCodec
for real-world low-resource speech communication.
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