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ABSTRACT

The advancement of speech interfaces operating in resource-
constrained environments drives the need for neural speech
codecs that achieve a critical balance among computational
efficiency, minimized bitrate, and low latency. These codecs
must also maintain high speech quality under challenging
acoustic conditions, integrating robust enhancement capa-
bilities to counteract real-world noise and reverberation. To
address these challenges, we present KD-Vocodec, an effi-
cient knowledge distillation (KD) framework for joint speech
coding and enhancement. The proposed system achieves su-
perior performance by training a student model to replicate
the intermediate representations of a high-fidelity teacher
model through feature-level knowledge distillation, thereby
delivering high-quality audio at a latency of 30 ms and scal-
able bitrates from 1 to 6 kbps. Rigorous evaluation on a public
test set confirms the superior capability of KD-Vocodec.

Index Terms— neural speech codec, knowledge distilla-
tion, speech enhancement

1. INTRODUCTION
The deployment of neural speech codecs on devices with
constrained resources requires balancing critical trade-offs
between bitrate, computational complexity, latency, and ro-
bustness to acoustic noise. The 2025 Low-Resource Audio
Codec (LRAC) Challenge focuses on this problem, calling
for codecs that perform effectively under realistic and noisy
conditions. Motivated by this challenge, a novel framework
called KD-Vocodec is proposed in this paper for joint speech
coding and enhancement. Its key innovation is a feature-level
knowledge distillation technique, which enables the system
to learn compact and noise-invariant representations. The re-
sulting codec achieves a low algorithmic latency of 30 ms and
supports variable bitrates, delivering enhanced performance
without a significant increase in computational complexity.

2. PROPOSED METHOD
Our proposed framework leverages feature-level knowledge
distillation to achieve joint speech coding and enhancement
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under strict latency and bitrate constraints. The system ar-
chitecture, depicted in Fig.1, is built upon a VQ-GAN-based
[1] clean teacher codec. The overarching design employs a
teacher-student paradigm wherein a student encoder is trained
to replicate the intermediate representations of a pre-trained
teacher encoder, facilitating the learning of clean features.
However, the final system retains the original decoder weights
without fine-tuning.

2.1. Teacher codec architecture
We adopt Vocos [2] as the backbone of our teacher codec ar-
chitecture, due to its superior performance in speech synthe-
sis. Specifically, a mirrored variant of the Vocos structure
is employed as the encoder–decoder backbone. The input
waveform is first converted into a time–frequency represen-
tation via STFT. The complex spectrogram is split into mag-
nitude and phase components, which are concatenated along
the frequency dimension and fed into the network. This com-
bined input is projected into a latent space with dimension D
via a linear layer. The encoder consists of multiple convo-
lutional blocks inspired by ConvNeXt [3], aiming to extract
deep hierarchical features. Each block contains a 1D depth-
wise convolution with weight normalization, followed by a
pointwise convolution. To ensure strict causality and avoid
algorithmic delay, all temporal padding is causal. To enhance
sequence modeling, ResNet blocks are incorporated. Inspired
by WavTokenizer [4], a causal self-attention mechanism is
inserted after the second convolutional block. The resulting
features are passed to the quantizer, which uses a Residual
Vector Quantizer (RVQ) [5] with 6 layers and gradient-based
codebook updates. Linear layers before and after quantiza-
tion map features between the quantization dimension and a
lower-dimensional space.

The encoder configuration is as follows: STFT window
size is 720 samples with a hop size of 180; hidden dimension
D is 256; the encoder stack contains 12 ConvNeXt layers,
each with an expansion channel size of 896. The decoder
mirrors the encoder’s structure but with reduced capacity to
meet receiver-side computational constraints: D is 252, the
number of ConvNeXt layers is 4, and the expansion channel
size is 256. The projection dimension for RVQ is set to 8.
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Fig. 1. Architecture of the proposed KD-Vocodec framework. (a) Overall pipeline of the teacher codec; (b) Detailed structure
of the ResNet Block; (c) Detailed structure of the ConvNeXt Block; (d) Architecture of the student encoder.

2.2. Student encoder
The student encoder is designed by augmenting the encoder
with several key components. This design is motivated by
the hypothesis that these augmentations will enable a more
robust derivation of clean embeddings from distorted speech
inputs. Specifically, causal self-attention modules are incor-
porated after each ResNet block, except for the final one,
to capture long-range contextual dependencies under causal
constraints. Furthermore, a two-layer LSTM layer is intro-
duced immediately preceding the final convolutional layer to
enhance temporal sequence modeling. A skip connection is
also employed between the input and output of this LSTM
to facilitate gradient flow and preserve fine-grained temporal
information.

2.3. Discriminator
Given that the input to our model is derived from the STFT
time-frequency representation, it is advantageous to employ
a Multi-Scale STFT Discriminator (MSSTFTD) [6] to assess
the reconstruction quality directly in the spectral domain. A
set of window lengths [128, 256, 512, 1024, 2048] is used,
and the hop length is fixed to one-fourth of the window length.
Accordingly, we introduce adversarial training solely using
the MSSTFTD to refine the output of the teacher codec.

2.4. Loss function
The training of the teacher codec utilizes a composite loss
function within a GAN framework. The total generator loss,
Lgenerator, is a weighted sum of multiple components: the
multi-scale mel-spectrogram reconstruction loss Lrec [7], the
generator adversarial loss Lg , the feature matching loss Lfeat

applied to the discriminator’s features, the codebook loss
Lcode, and the commitment loss Lc. It is formulated as:

Lrec = ∥M (x)−M (x̂)∥1 (1)

Lg = ∥1−D(x̂)∥22 (2)

Lfeat = 2
∑
l

∥∥Dl(x)−Dl(x̂)
∥∥
1

(3)

Lgenerator =λrecLrec + λgLg + λfeatLfeat

+ λcode ∥sg[ze]− ek∥22︸ ︷︷ ︸
Lcode

+λc ∥ze − sg[ek]∥22︸ ︷︷ ︸
Lc

(4)

In the above equations, x and x̂ denote the target and recon-
structed speech, respectively, M(·) is the mel-spectrogram
transform, D(·) is the discriminator output, Dl(·) represents
the feature map of the l-th discriminator layer, ze is the quan-
tizer output, and ek is the codebook vector. The multi-scale
mel-spectrogram loss Lrec is computed using window length
samples [32, 64, 128, 256, 512, 1024, 2048], with the hop
length fixed at 1/4 of each window length. Each scale uses
different mel bins of [5, 10, 20, 40, 80, 160, 320]. Loss
weights are set as: λrec = 15, λg = 2, λfeat = 1, λcode = 1,
λc = 0.25. The discriminator is trained separately with the
adversarial loss Ld.

Ld = ∥1−D(x)∥22 + ∥D(x̂)∥22 (5)

For knowledge distillation in the student encoder, the loss
combines the MSE and cosine distance between the teacher
and student embeddings, weighted by 1.0 and 0.1, respec-
tively.

3. EXPERIMENTAL SETUP
3.1. Training data preparation
We trained our model on a large-scale speech dataset curated
from high-quality speech samples obtained from the EARS,
VCTK, Common Voice, LibriTTS, Multilingual LibriSpeech
datasets, and DNS Challenge 5 dataset. All speech signals
are resampled to 24 kHz. To extend the noise suppression
and dereverberation capabilities of the model, we further con-
structed a noise data set that includes noise from the VCTK,
WHAM, FSD50K, and FMA datasets, encompassing various
noise types. During training, each speech sample is combined
with background noise with an 80% probability, where signal-
to-noise ratios (SNRs) are uniformly distributed between -5
dB and 30 dB. For reverberation, we use room impulse re-
sponses (RIRs) from the Motus dataset, and each sample is
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Table 1. Objective Performance Comparison on the Open Test Set
Bitrate Model Condition ScoreQ-ref UTMOS Sheet-SSQA PESQ Audiobox AE-CE

6 kbps

Baseline
Clean 0.43 2.97 3.55 2.13 5.25
Noisy 0.75 2.56 2.92 1.73 4.6
Reverb 0.92 1.79 2.67 1.29 4.25

Proposed
Clean 0.15 3.74 4.26 3.22 5.69
Noisy 0.40 3.36 3.73 2.23 5.29
Reverb 0.48 3.08 3.51 1.80 5.27

1 kbps

Baseline
Clean 1.01 1.37 2.07 1.21 3.96
Noisy 1.15 1.35 1.95 1.18 3.7
Reverb 1.12 1.32 2.43 1.15 3.55

Proposed
Clean 0.38 3.26 3.60 1.94 5.37
Noisy 0.53 3.00 3.30 1.61 5.14
Reverb 0.62 2.74 3.06 1.43 5.01

augmented with reverberation with a probability of 50% dur-
ing training. All training data follow the cleaning and prepro-
cessing procedures defined in the baseline1.

3.2. Implementation Details
Notably, our approach avoids using any pre-trained models
throughout the training and inference pipeline. The training
procedure consists of two distinct stages. The first stage in-
volves training the teacher codec using a GAN-based recon-
struction objective. This model is trained for 1000 epochs
with a batch size of 128, using the AdamW optimizer with
a cosine annealing learning rate scheduler. In the subsequent
distillation stage, the student encoder is trained to replicate the
teacher’s embeddings. This stage runs for 500 epochs with a
batch size of 384, optimized by RAdam with an exponential
decay scheduler.

3.3. Computational complexity
The teacher codec operates with 1.11G multiply–accumulate
operations per second (MACs) computational complexity
(with the decoder accounting for 281.57M MACs) and con-
tains 11.07M parameters. By integrating the student encoder
(979.18M MACs), the complete system achieves a complex-
ity of 1.28G MACs with 12.65M parameters. The system
maintains strict causality without look-ahead. Consequently,
the algorithmic latency is determined solely by the 30-ms
STFT analysis window at a 24 kHz sampling rate. The sys-
tem supports variable bitrates via its RVQ module, where
each quantizer layer provides approximately 1 kbps (using a
1024-codebook at 100 fps), allowing operational modes of 1
kbps (1-layer) and 6 kbps (6-layers).

3.4. Checkpoint selection strategy
We employ a systematic strategy for selecting the final model
checkpoint. The validation objective metrics are evaluated at
regular intervals during training. Should a consistent and pro-
nounced degradation in these metrics be observed, the early

1https://github.com/cisco-open/lrac_data_
generation

stopping strategy is triggered, and the checkpoint with the
best performance up to that point is selected. Otherwise, the
model checkpoint achieving the lowest training loss at the end
of the training process was chosen as the final model.

4. EVALUATION RESULTS
The proposed approach is evaluated using the official chal-
lenge metrics and compared against the official baseline sys-
tem [8]. As shown in Table 1, the KD-Vocodec framework
demonstrates consistent performance improvements at both
operational bitrates of 1 kbps and 6 kbps. The evaluation em-
ploys five objective metrics—ScoreQ ref [9], UTMOS [10],
Sheet-SSQA [11], PESQ [12], and Audiobox Aesthetics CE
[13]—selected for their high correlation with subjective qual-
ity assessments, as confirmed by Pearson correlation analysis,
thereby providing a reliable measure of decompressed speech
quality.

5. CONCLUSION
This paper introduces KD-Vocodec, our submission to Track
2 of the 2025 Low-Resource Audio Codec (LRAC) Chal-
lenge. Experimental evaluations demonstrate that KD-
Vocodec delivers superior performance over the baseline
under diverse acoustic conditions. The system provides an
effective solution for real-world speech coding applications
that require efficient processing on resource-constrained de-
vices.
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